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Abstract
Vascular occlusion is one of the major causes of mortality and morbidity. Blood vessel blockage can lead to thrombotic 
complications such as myocardial infarction, stroke, deep venous thrombosis, peripheral occlusive disease, and pulmonary 
embolism. Thrombolytic therapy currently aims to rectify this through the administration of recombinant tissue plasmino-
gen activator. Research is underway to design an ideal thrombolytic drug with the lowest risk. Despite the potent clot lysis 
achievable using approved thrombolytic drugs such as alteplase, reteplase, streptokinase, tenecteplase, and some other 
fibrinolytic agents, there are some drawbacks, such as high production cost, systemic bleeding, intracranial hemorrhage, 
vessel re-occlusion by platelet-rich and retracted secondary clots, and non-fibrin specificity. In comparison, bacterial staphy-
lokinase, is a new, small-size plasminogen activator, unlike bacterial streptokinase, it hinders the systemic degradation of 
fibrinogen and reduces the risk of severe hemorrhage. A fibrin-bound plasmin–staphylokinase complex shows high resistance 
to a2-antiplasmin-related inhibition. Staphylokinase has the potential to be considered as a promising thrombolytic agent 
with properties of cost-effective production and the least side effects.
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Introduction

Hemostasis is the arrest of bleeding from damaged vessels 
and is essential for survival. The main physiological pro-
cesses involved, include: blood coagulation, platelet activa-
tion, and vascular contraction [1]. Blockage of blood flow 
is considered as one of the major causes of mortality [2]. 
In many countries, the majority of deaths and disabilities 
are caused by CVDs,1 one of which comprises thrombotic 
disorders [3]. Every year, approximately 12 million peo-
ple die after a MI or stroke [4]. Conditions associated with 
thrombosis, such as myocardial infarction, cerebral vascular 
thrombosis, pulmonary embolism, and DVT are a substantial 
threat to human life. Heart attacks and strokes often begin 
with blockage of the blood flow to the heart or brain due to 
atherosclerosis or the accumulation of blood components 
along the inner walls of the blood vessels, which reduces 
the velocity of blood flow in the vessels and decreases their 
flexibility [5]. Thereby, impeding the supply of blood to the 
brain and heart [5]. Platelet and thrombin play a major role 
in the development of thrombosis in the body and plasmin 
dissolve the resulting clot [6]. Fibrinolysis is a result of 
proteolytic degradation of fibrin by t-PA. Platelets induced 
by thrombin can make t-PA inactive through the produc-
tion of PAI-1. As a result, a secondary clot is formed by 
platelet aggregation at the site of the initial clot lysis having 
thrombin [7]. Therefore, there is a need to design an anti-
thrombotic agent that can inhibit the action of thrombin and 
platelet aggregation while causing the fibrinolysis of the 
blood clots.

Thrombolytic agents

Plasminogen protein is produced by liver as a pre-enzyme 
(zymogen) and is released in the blood. This protein is 
changed into a fibrinolytic enzyme called plasmin by plas-
minogen activators [8]. Hence, the intravenous infusion of 
plasminogen activators is an important strategy for treating 
thrombosis [6, 7]. As a result of plasminogen activation, 

several key bindings within the fibrin network are hydro-
lyzed, which dissolves clot [9]. Anticoagulants with blood-
thinning effects like vitamin K antagonists (VKA) (the 
most widely used substance, warfarin,-a coumarin deriva-
tive—under brand name of Coumadin) and heparin as well 
as antiplatelet drugs such as aspirin have been widely used 
to treat and prevent clotting. [10, 11]. However, these prod-
ucts were only able to reduce the size of the clot while the 
rapid and complete dissolving of the clot would improve 
symptoms and save the patient’s life [11, 12]. The history 
of therapeutic thrombotic drugs began in 1933, when the 
filtered fluid medium from a specific strain of Streptococ-
cus (β-hemolytic streptococci) was discovered to dissolve 
the blood clot. The primary clinical application of strepto-
kinase was in the fight against exudative pleural effusion, 
hemothorax, and tuberculous meningitis [13, 14]. In 1947, 
fibrinolytic potential of urine and its active molecule, called 
urokinase, identified for the first time. Unlike streptokinase, 
urokinase does not have antigenic properties [15]. In 1958, 
streptokinase (47.3 kDa) was first used in patients with AMI, 
which led to a focus on the treatment using this agent [16]. 
Unlike streptokinase, urokinase does not have such potent 
antigenic properties [15]. The t-PA is a natural fibrinolytic 
agent found in endothelial vascular cells [17]. It causes a 
balance between thrombolysis and thrombogenesis and has 
a high affinity for binding to fibrin [18]. Binding t-PA and 
plasminogen to the fibrin surface in the area of the thrombo-
sis leads to a conformational changes, which facilitates the 
conversion of plasminogen to plasmin dissolving the clot 
[19]. Meanwhile, a third generation of thrombolytic drugs 
has reached the level of clinical trials. Many of them are 
derived from alteplase, which is currently the gold stand-
ard for the treatment of acute coronary syndrome. The most 
prominent are reteplase, tenecteplase, and lanoteplase (all 
from genetically mutated variants of alteplase) [3]. Treat-
ment with thrombolytic agents, however, is not suitable for 
all patients. For example, delay in recovery in some patients 
following thrombolytic treatment after the onset of symp-
toms (rather than the early stages of disease) indicate that 
they are not eligible for this treatment [20]. Even, it may 
not be an appropriate treatment for those who were treated 
at early stages of disease. Further, increased risk of bleed-
ing after treatment with thrombolytic drugs means that all 
patients need to be screened and evaluated for this type of 
treatment. However, the risk of bleeding in patients whose 
screening is good is not completely eliminated [20, 21]. Very 
severe bleeding can occur in the brain, and the consequent 
intracranial hemorrhage can be catastrophic. Therefore, the 
benefits and risks of thrombolytic treatment should be care-
fully considered [22].

The ideal thrombolytic drug should have the following 
characteristics: fibrin-specific, stable, enabling reperfu-
sion, without reocclusion or formation of a secondary clot, 

1  The abbreviations used are: CVDs cardiovascular diseases, DVT 
deep venous thrombosis, t-PA tissue plasminogen activator, PAI-1 
plasminogen activator inhibitor type 1, TIMI thrombolysis in myocar-
dial infarction, ISIS international study of infarct survival, ASSENT 
assessment of safety and efficacy of a new thrombolytic agent, AMI 
acute myocardial infarction, AIS acute ischemic stroke, EGF epider-
mal growth factor, CHO chinese hamster ovary, DSPA desmodus 
salivary plasminogen activators, EACA​ epsilon-aminocaproic acid, 
LBS lysine binding site, FCB-2 fibrin(ogen) cyanogen bromide frag-
ment-2, E (DD) complex of D-dimer non-covalently associated with 
fragment E, DD D-dimer, SAK staphylokinase, PEG poly ethylene 
glycol, CAPTORS collaborative angiographic patency trial of recom-
binant staphylokinase, ESPRIT european study of the prevention of 
reocclusion after initial thrombolysis.



Molecular Biology Reports	

1 3

resistance to PAI-1, no antigenicity, reasonable cost, easy 
administration, low incidence of systemic bleeding, and low 
incidence of intracranial hemorrhage [4, 23–25]. Non-fibrin-
specific thrombolytic agents tend highly to plasma-soluble 
plasminogen converting it into plasmin while fibrin-specific 
thrombolytic agents have a lower tendency to this plasmi-
nogen [6]. The majority of plasminogen converted to plas-
min is inhibited by α2-antiplasmin. However, by decreas-
ing α2-antiplasmin, some of these plasmins, through the 
decomposition of fibrinogen, result in dissolving fibrinogen 
and an increased risk of intravenous hemorrhage. Specific 
thrombolytic agents for fibrin have a high tendency to make 
fibrin-bound plasminogen turn into plasmin. This plasmin 
is not available for α2-antiplasmin and causes fibrin lysis. 
However, some of the plasmin remaining in the solution can 
also come into the clot area and cause fibrin degradation [6].

Plasminogen activators can either act directly or indi-
rectly [22]. Direct activators of plasminogen act more spe-
cifically, with their protease-serine activity, they break down 
the Arg561–Va1562 band in the plasminogen and convert it 
into plasmin in the area of activity. Indirect activators such 
as staphylokinase (a promising third-generation drug) have 
no proteolytic activity and form a complex with a one–one 
stoichiometric ratio with plasminogen which can convert the 
next plasminogen into plasmin [22, 23].

First‑generation thrombolytic drugs

First-generation drugs act systemically and are not selective 
for the clot; in fact, they are attached to both plasminogen in 
the blood and the clot.

Urokinase

Urokinase which is a two-chain urokinase-type plasmino-
gen activator (tcu-PA), is a serine protease without fibrin 
specificity obtained from human urine or tissue culture of 
human kidneys [26].

This thrombolytic agent includes three domains: the ser-
ine protease domain at the end of the carboxyl, the kringle 
domain, and the growth factor domain at the end of amino 
[26]. Severe side effects have been reported after the admin-
istration of urokinase to patients with AMI, including the 
transmission of infectious agents during the production pro-
cess. For this reason, the FDA has withdrawn abbokinase 
(commercially available urokinase) from the market [27].

Streptokinase

Streptokinase is a plasminogen activator produced by vari-
ous strains of β-hemolytic streptococci. Streptokinase is a 
non-fibrin specific extracellular enzyme that performs its 
fibrinolytic activity by indirect activation of plasminogen 

available in blood circulation [28]. Like urokinase, strep-
tokinase has three domains: alpha, beta, and gamma-which 
are separated by two linkers. The half-life of streptokinase 
is approximately 30 min [29, 30]. Administration of this 
prokaryotic protein is accompanied by allergic reactions 
andhypotension, in addition, there is also an antibody-
dependent inhibition of streptokinase (preventing its reuse) 
[23, 31]. Due to the systemic plasminogen activation, the 
administration of this protein also causes bleeding problems 
(extensive fibrinogen depletion) and formation of a second-
ary clot [28].

Approximately 30% of patients suffering from AMI who 
treated with streptokinase was classified as TIMI grade 
3 flow (complete perfusion) by 90 min and 20% of them 
achieved TIMI flow grade 2 flow (partial perfusion). A 
30 day mortality rate of 7.3% and an intracranial hemor-
rhage rate of 0.54% was observed [32].

Second generation thrombolytic drugs

Second-generation drugs are selective for the clot and tend 
more to plasminogen attached to clots.

Saruplase

Saruplase is a recombinant single-chain urokinase-plasmi-
nogen activator (r-scu-PA) or prourokinase. This protein 
is actually a naturally occurring prodrug from a protease. 
Under in vivo condition, this protein relatively changes to 
its active form by plasmin—i.e. low-molecular-weight dou-
ble-stranded urokinase (276 amino acids) [33]. In addition, 
the unconverted saruplase component can directly activate 
plasminogen [32]. The half-life of saruplase is low (7–8 min) 
[33]. Saruplase reduces systemic plasmin in patients. In 
addition, its consumption is accompanied by a decrease in 
α2-antiplasmin and fibrinogen and an increase in fibrinogen-
degradation products [34]. Its systemic fibrinolytic activ-
ity is less than that of streptokinase but more than that of 
alteplase. The fibrin-specific binding in saruplase is lower 
than that of alteplase [35].

Recombinant tissue plasminogen activator

Human t-PA was originally obtained from the human 
uterus [36]. It is a glycoprotein with four domains located 
N-terminally (finger (F-domain) (residues 4–50), epidermal 
growth factor (E-domain) (residues 50–87), kringle1 (K1 
domain) (residues 87–176), kringle2 (K2 domain) (resi-
dues 176–256)) and a domain C-terminally (catalytic ser-
ine protease (P- domain) (residues 276–527)), 17 di-sulfide 
bonds, and a molecular weight of 67 kDa—is important as 
it creates a balance between the phenomenon of thromboly-
sis and thrombogenes in the fibrinolytic system [36–38]. 
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Catalytic triad contain His322, Asp371, and Ser478. Both F 
and K2 domains bind to fibrin and accelerate the activation 
of plasminogen by t-PA [36]. The plasma half-life of native 
t-PA is short due to liver clearance [39]. This molecule has 
three potential sites of N-glycosylation at residues of 117, 
184 and 448. It also includes an O-linked fucose residue at 
Thr61. The fast clearance of t-PA in the hepatocytes is due to 
E and F domains as well as carbohydrate side chain residues 
[40]. There may be two phases of t-PA clearance rate from 
the hepatocytes: (1) rapid clearance by E and F domains 
interaction (2) the second phase caused by glycosylation 
sites presence [41]. Mannose receptors in the liver recog-
nize Asn117 residue in the K2 domain that causes its rapid 
clearance. Moreover, t-PA without the E domain indicated 
an enhanced in vivo half-life [40]. Its reduced clearance rate 
is due to replacement of Tyr67 in the E-domain. Amino acid 
changes in the F domain between residues 42–49 also have 
an important role in drug clearance [42]. t-PA is the main 
plasminogen activator in the blood while u-PA carries pro-
teolytic activity in the tissue and has a lower effect on the 
intravascular lysis of fibrin as compared to t-PA [43]. For 
beginning and extending the fibrinolysis process the sedi-
mentation of a large amount of plasminogen and t-PA in 
fibrin deposits occur, along with increase of plasmin activity 
in this section [6]. T-PAs are available in two forms—single 
chain forms of sct-PA and two-chain tct-PA. PAI-1 inhibits 
the plasminogen activation activity of t-PA [38]. PAI-1 is 
the most effective inhibitor of t-PA and is a serine protease 
inhibitor (serpin) that acts as a false substrate for its target 
protease, with which it forms an inactive equimolar complex. 
This t-PA inhibitor acts through forming a complex between 
the active site of t-PA and the Arg346–Met347, trapping amino 
acids in its structure. The PAI-I is in two forms—active and 
inactive. The active form loses its activity spontaneously 
and has a half-life of about half an hour. The inactive form 
is the result of active form decomposition. PAI-I is made by 
endothelial cells and hepatocytes and it is seen in platelets, 
placenta, and serum [4].

Alteplase (rt-PA) is a tissue plasminogen activator manu-
factured using rDNA technology and using the cDNA of 
human melanoma cell lines [44]. Clinical trials have con-
firmed the efficacy and safety of rt-PA in the treatment 
of occlusions led by vessel-related devices such as cath-
eters [45]. Intravenous alteplase is superior to placebo for 
both AMI and AIS if used early [46]. Thrombolysis with 
alteplase < 12 h after AMI had a great impact and its maxi-
mum benefit was within < 6 h [46]. Effect of intravenous 
alteplase plus heparin within 5 h from onset of symptoms 
into patients with suspected AMI showed the 6 months mor-
tality rate of 10.4% for alteplase compared with 13.1% of 
that placebo, a relative reduction of 21%. Also, patients with 
proven MI revealed a relative reduction of 26% [47]. Com-
paratively, alteplase < 3 h of the onset of stroke significantly 

enhanced the chance of an almost complete recovery in the 
people [48]. Among patients treated between 3 and 4.5 
h after the onset of a stroke, the rate of adverse outcome 
(death or severe disability) in alteplase group was signifi-
cantly lower than that of placebo (48 vs. 55%; P = 0.04) [46]. 
Alteplase infusion within 6 h of ischemic stroke exhibited a 
significantly higher hazard of death during the first 7 days. 
However, those who survived the acute phase, showed a 
significantly long-term survival [49]. In a concentration-
dependent manner, the incidence of symptomatic intracra-
nial hemorrhage was higher with alteplase than with placebo 
(2.4 vs. 0.2%; P = 0.008) [49, 50].

Anistreplase

Anistreplase, is also known as anisoylated plasminogen-
streptokinase activator complex, is actually another form 
of streptokinase [9, 40]. This complex consists of human 
plasminogen and acylated streptokinase conjugated with an 
equal molecular concentration, which—after spontaneously 
deacylation—converts the next plasminogen into plasmin. 
The anistreplase deacylation (hydrolysis) leads to the release 
of the p-anisoyl group [51]. This activator complex is a fibrin 
non-specific binding thrombolytic agent with side effect pro-
file similar to that of streptokinase, but has the advantage 
of single-bolus administration [52]. Administration of anis-
treplase led to a combined TIMI grade 2 and TIMI grade 3 
flow rate of 50–60% at 90 min. The ISIS–3 study reported a 
mortality rate of 10.5% at 35 days and an intracranial hem-
orrhage of 0.6% after once anistreplase injection [31, 53].

Third‑generation thrombolytic drugs

Third-generation drugs show high propensity to clot-bound 
plasminogen instead of plasma plasminogen even more so 
than for the second-generation drugs [54, 55].

Tenecteplase

Tenecteplase (TNK-tPA) is a mutated rt-PA in three sites in 
which the half-life of protein is increased up to 5–6 times; it 
represents bindings 80 times lower than that of alteplase to 
PAI-1 [56]. Tenecteplase, similar to the alteplase, is bound 
to the fibrin [57]. However, this specificity is 15 times more 
than that of alteplase [56]. Its usable dosage is 0.25 mg/kg 
as a single bolus [56]. The ASSENT-1 clinical trial demon-
strates the efficacy and safety of tenecteplase [58]. However, 
the ASSENT-2 clinical trial in patients with AMI reported 
that hemorrhage and allergic reactions were associated with 
this drug [59].
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Reteplase

Reteplase is a single-chain mutant t-PA in which three EGF, 
finger, and kringle-1 domains have been removed [35]. It is 
a non-glycosylated protein compared to alteplase, expressed 
in Escherichia coli bacteria [60]. Reteplase, like alteplase, 
demonstrates increased plasminogen activation in the pres-
ence of fibrin. However, the tendency of binding to fibrin is 
significantly (5 times) less than that of alteplase [61]. This 
thrombolytic agent has a high half-life (18 min) (approxi-
mately 4 times that of alteplase). Its usable dose is 10 milliu-
nits, plus 10 milliunits, as oral administration every half hour 
[35]. Reteplase eligibility has been evaluated in a clinical 
trial in patients with AMI. It was shown that dual adminis-
tration of reteplase versus the standard dose of alteplase can 
cause earlier and more vasodilatation [62]. Similar to other 
drugs, hemorrhage and allergic reactions are associated with 
the use of reteplase [63].

Monteplase

Monteplase is a fibrin-specific binding tissue plasminogen 
activator. This mutated protein is an improved thrombolytic 
agent for a clinical application in which amino acid cysteine 
at position 84 of the growth factor domain is substituted 
by serine [60, 61]. The biological half-life of monteplase is 
greater than that of the alteplase. This thrombolytic agent 
can be injected as a single bolus injection (in about 2 min-
utes) while another mutated t-PA requires intra-arterial 
injection for more than 60 min [61].

Lanoteplase

Lanoteplase (nPA) is a wild-type mutated t-PA in which the 
domains for EGF and t-PA finger have been removed and the 
kringle 1-glycosylated points have also been changed. This 
thrombolytic agent, produced in CHO cells, has a half-life 
of approximately 10 times of that of alteplase and can reach 
up to 45 min [24, 64]. In animal models, it has more lytic 
activity and less fibrin tendency than alteplase [35]. Kidney 
clearance abilities and the optimal half-life of this molecule 
make it suitable for single administration. Its usable dose is 
120 kilounit per kilogram [24, 35]. Because of an increased 
incidence of intracranial hemorrhage, it was not licensed in 
the U.S [65, 66].

Pamiteplase

Pamiteplase or sulinase is another mutated t-PA. Its kringle 
1-glycosylated domain are removed and it has a single-
point mutation (Arg275 to Glu) leading it resistant to con-
version to a two-chain form by plasmin. Pamiteplase and 
t-PA have the same fibrin tendency and the same specific 

activity in the in vitro conditions. In addition, inhibition 
of pamiteplase and t-PA by PAI-1 is similar [67]. Plasma 
clearance of pamiteplase was estimated to be 7 times slower 
than t-PA in pharmacokinetic properties on rats. Mean resi-
dence time or lifetime (Half-life = 0.693 × (Residence time) 
[68] for pamiteplase was 62 min versus 9 min for t-PA [69]. 
Pamiteplase showed more thrombolytic effect after intra-
venous injection than t-PA in a canine model of coronary 
artery thrombosis [69]. After 30 min of thrombosis induc-
tion in rabbit, comparison of single bolus intravenous admin-
istration of pamiteplase and single bolus or 60 min infusion 
of t-PA showed that thrombolytic activity of pamiteplase 
was 4 times more than that of t-PA, though dose-dependent 
thrombolytic activity was observed in both of them. The 
better thrombolytic activity of pamiteplase was associated 
with its relatively higher value in plasma due to its longer 
half-life. The clearance of plasma fibrinogen to less than 
20% of the baseline level was observed in all groups [70]. 
The bleeding time also did not change significantly in any 
group [70, 71]. In addition to plasma fibrinogen depletion 
[70], toxicity studies of pamiteplase on rats and monkeys 
totally showed a hemorrhage, increase of coagulation time 
and transient decrease in locomotor activity at the injec-
tion sites. Other side effects were increased platelet count, 
partial reduction of hemoglobin and hematocrit, increased 
level of plasma phospholipids, total protein, total choles-
terol, and liver weight. The approximate single lethal dose 
of pamiteplase was more than 60 mg/kg in rats, and more 
than 10 mg/kg in squirrel monkeys and cynomolgus mon-
keys [72]. In a pharmacokinetic study in human volun-
teers, biological activity (lysis time of 50% of the clot) was 
30–47 min after a single bolus administration of 0.5–4 mg/
kg pamiteplase [67]. In another study, in 157 patients with 
AMI treated with 0.05, 0.1, 0.2, or 0.3 mg/kg of pamiteplase, 
complete patency of the vessel (TIMI grade 3 flow rates) 
after 60 min was observed in 42%, 57%, 63%, and 54% of 
the patients respectively. Adverse effects were also observed 
in 7 and 17% of patients receiving 0.2 and 0.3 mg/kg of the 
drug respectively [69].

Duteplase

Duteplase (met-t-PA) is a third-generation 2-chain t-PA 
in which valine at position 245 is substituted by methio-
nine [42, 73]. It is produced in CHO cells. In vitro specific 
activity of duteplase is lower as compared to alteplase [40]. 
Duteplase possesses slower clearance rate than single chain 
t-PA [74]. The proteolytic cleavage should make duteplase 
susceptible to irreversible inactivation. Because of reduced 
thermal stability, met−t-PA exhibits a lower rate of seri-
ous and fatal bleeding side effects [42]. It was found that 
a weight adjusted injection of duteplase combined with 
oral aspirin and intravenous heparin for AMI could be as 
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effective and safe as alteplase in the ESPRIT study. But fol-
lowing the initial successful thrombolysis, reocclusion and 
reinfarction was a problem [75].

Amediplase

Amediplase (K2tu-PA) consists of the first 3 residues of 
the F domain and the K2 domain of t-PA (1–3 + 176–275) 
linked to the catalytic P domain of scu-PA (159–411) [42]. 
The molar mass of the third-generation thrombolytic agent 
produced in CHO cells is about 39.9 kDa (356-amino-acid) 
[40]. Plasma half-life was 30 min after bolus injection in 
rabbits. The reason is probably the lack of F, EGF and K1 
domains [74]. Amediplase showed a tenfold lower activ-
ity than alteplase in a clot-internalized lysis model (in-clot 
injection) but this activity was similar in an external model 
[76]. This result suggested that amdiplase had weak fibrin 
affinity due to the interaction of the P domain from the urok-
inase with the K t-PA domain. However, it indicated a better 
clot penetration [39, 40, 74]. In another model of external 
clot lysis, amediplase at therapeutic concentrations was more 
active than TNK-tPA and scu-PA [77].

Desmoteplase

The saliva of the vampire bat Desmo dusrotundus contains 
a family of four plasminogen activators known as DSPA, 
among which DSPA alpha 1 or Desmoteplase (bat-PA) is 
larger than the others (477 amino acids) and is structurally 
similar to t-PA in human. It includes a finger domain, an 
EGF domain, and a single kringle domain, without having a 
secondary kringle or a plasmin cleavage site, which is essen-
tial for conversion into a two-chain form of t-PA [78, 79]. 
Not converting to a two-chain form makes bat-PA the only 
native single-chain plasminogen activator with complete cat-
alytic activity [79]. The bat-PA is produced by using recom-
binant technology in mammalian cells. This protein, as a 
thrombolytic agent, is highly fibrin-specific and performs its 
fibrinolytic activity by the direct activation of plasminogen 
[9, 40]. Its usable dose is 0.5 mg/kg [35]. While bleeding 
time (BT) was similar to that of human t-PA, bat-PA caused 
a much higher number of long-term bleeding events than 
t-PA [80]. In the only clinical trial of bat-PA reported so far, 
the half-life of the drug was 2.8 h, which was suitable for 
single bolus administration in clinical use [35]. However, the 
bat-PA stimulated the immune system [35].

Other plasminogen activators

Plasminogen activators from snakes

Venom of snake composed of very different types of pro-
teases with fibrinolytic properties. Trimeresurus stejnegeri 

venom plasminogen activator, TSV-PA (234 amino acids, 
approximate molar mass of 33 kDa and pI of 5.2) is a single-
chain plasminogen activator obtained from the venom of the 
chinese green tree viper snake [81]. Moreover, venom of this 
snake contains enzymes like stejnobin and stejnefibrase 1–3. 
These enzymes directly degrade fibrinogen without plas-
minogen activator activity. The TSV-PA includes a single 
potential site of N-glycosylation at Asn161 and 6 disulfide 
bonds in addition to His41, Asp86 and Ser180 considered as 
the catalytic triad [40, 81]. The TSV-PA glycoprotein has 
only 21–23% sequence similarity with the catalytic domains 
of u-PA and t-PA without presence of sequences responsible 
for interaction of t-PA (KHRR; Lys-His-Arg–Arg) and u-PA 
(RRHR; Arg–Arg-His-Arg) with PAI-1. As a results, it lead 
to the prolonged half-life [40, 42]. E. coli has been used to 
produce TSV-PA [81].Considering the lack of the presence 
of F, epidermal growth factor and K domains, it can be said 
that the plasminogen activator activity is not increased in 
the presence of fibrin (nearly 50-fold < that of t-PA) [42].

Haly-PA, a glycoprotein with 234 amino acids (32 kDa) 
purified from the venom of Agkistrodon halys, is 82% similar 
to the TSV-PA [82]. Expression system of baculovirus has 
been used to express this molecule [40]. The activity of this 
plasminogen activator is 30-fold lower than that of u-PA. 
The prolonged half-life of Haly-PA is because of the lack of 
domains for interaction with PAI-1 [42].

Moreover, another plasminogen activator, i.e.LV-PA 
(33 kDa) were purified from a snake (Lachesis muta) with a 
90% sequence identity with TSV-PA and 85% identity with 
Haly-PA [83].

Chimeric plasminogen activators

A specific activity of 150,000 IU/mg was observed with a 
combination of GHRP (Gly-His-Arg-Pro) tetrapeptide and 
32 kDa low-molecular-weight scu-PA (144–411). Other 
properties of molecule (GHRP-scu-PA-32 K) expressed 
in CHO cells were a 2.5-fold higher fibrin binding, higher 
thrombolytic potency and lower fibrinogen depletion in 
plasma as compared with the native low molecular weight 
scu-PA [84].

A new chimeric truncated t-PA variant (394 amino acids) 
was also created that called GHRP-SYQ-K2S. It included 
the kringle 2 domain and the serine protease domain (K2S) 
[85]. The domains of F, epidermal growth factor and K1 
were deleted just like reteplase. The first 3 residues of t-PA 
(Ser-Tyr-Gln) were kept due to their importance for protein 
activity. A chimeric tetrapeptide (Gly-His-Arg-Pro) was 
also added upstream of SYQ-K2S for compensation of the 
loss of fibrin affinity as a result of the deletion of the finger 
domain. With a yield of 752 IU/mL (566,917 IU/mg), it was 
produced in CHO cells [42, 85]. There was a possibility 
of GHRP-SYQ-K2S interaction with fibrin monomers and 
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polymerization hindrance. According to In vitro studies, the 
molecule has 86% of the fibrin binding capacity of t-PA in 
comparison with 30% for reteplase [40, 85].

Combination of plasminogen activator with anti-aggre-
gation of platelet (a decorsin as platelet aggregation inhibi-
tor, a low molecular weight scuPA-33 kDa and a thrombin 
inhibitory domain) [86] or its combination with antibodies 
against fibrin [86] was also provided.

Staphylokinase

Thrombolytic agents mentioned above have some side 
effects, including hemorrhage, vessel re-blockage, or high 
immunogenicity. The use of bacterial staphylokinase with 
small size (15.5 kDa) in the treatment and removal of blood 
clots was considered for a wide range of vascular system dis-
orders. Indeed, it is a promising third-generation thrombo-
lytic agent with fibrin specificity that can be used potentially 
for these disorders [4] (Fig. 1).

History of staphylokinase purification

Initially, Davidson (1951) and Glanville (1963) precipitated 
protein containing staphylokinase from supernatant fluid of 
cultures by adjusting the pH to 3.3 with ~ 10 mM HCl [87, 
88]. Glanville also precipitated staphylokinase at 75% satu-
ration of (NH4)2S04. The in vitro fibrinolytic properties of 

staphylokinase were evaluated by Lewis (1964) and Sweet 
(1965) [89, 90]. Lewis (1964) and Kanae (1986) studied 
the in vivo thrombolytic of staphylokinase in dogs [91, 92]. 
Jackson and Kondo (1981) purified the staphylokinase by 
affinity chromatography on plasmin-Sepharose [93] and 
plasminogen-Sepharose [94].

Characteristics of staphylokinase

The half-life in plasma of staphylokinase is 6 min [35]. It 
is a protein found in the culture medium of many strains of 
Staphylococcus aureus which could convert passive plasmi-
nogen into active plasmin [95, 96]. Plasminogen activation 
of staphylokinase is carried out by a two-step mechanism 
[97]. First, a complex between staphylokinase and plasmino-
gen occurs, then the active region of this complex is accessi-
ble to convert plasminogen into plasmin. In fact, by forming 
this complex, peptide bond between lysine 10 and lysine 11 
in staphylokinase is hydrolyzed, which ultimately results in 
a peptide bond cleavage between arginine 561 and valine 
562 of plasminogen [6]. In the initial delay phase, plasmino-
gen in the staphylokinase-plasminogen complex converts to 
plasmin [98]. After formation of a small amount of plasmin, 
staphylokinase binds to plasmin instead of plasminogen, 
and then the staphylokinase-plasmin complex rapidly and 
directly transforms plasminogen into plasmin. The activa-
tion effect of the staphylokinase-plasmin or plasminogen 

Fig. 1   Mechanism of the action of staphylokinase for dissolving 
the clot. Fibrin-specific thrombolytic agents such as staphylokinase 
have a lower tendency to plasma-soluble plasminogen converting 
it into plasmin. The majority of soluble plasmin is inhibited by α2-
antiplasmin. By decreasing α2-antiplasmin, some of these plasmins, 
result in dissolving fibrinogen and an increased risk of intravenous 

hemorrhage. Staphylokinase is effective in terms of dissolving the 
clot. It have a high tendency to make fibrin-bound plasminogen turn 
into plasmin. This plasmin is not available for α2-antiplasmin and 
causes fibrin lysis. However, some of the plasmin remaining in the 
solution can also come into the clot and cause fibrin degradation. 
Arrows with dash indicates the fewer efficacies of the action
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complex is inhibited by α2-antiplasmin in the absence of 
fibrin [99, 100]. The fibrin-bonded staphylokinase-plasmin 
complex is about 100 times more resistant to α2-antiplasmin 
than the complex without fibrin bond [6]. The inhibition 
of the staphylokinase-plasmin or plasminogen complex via 
α2-antiplasmin is suppressed by EACA, which is in fact 
similar to LBS of plasmin [101]. This inhibitory effect is 
reduced in the presence of fibrin or FCB-2 (composed of 
chain remnants Aα148-207, Bβ191-224, 225-242, 243-305, 
γ795-265, linked by disulfide bond) by competition for bind-
ing to LBS. The initial rate of activation of plasminogen 
by staphylokinase increases 2 to 3 times in the presence of 
fibrin [102]. Staphylokinase alone does not bind to the fibrin, 
but the staphylokinase–plasminogen or plasmin complex is 
bound to fibrin by LBS [4]. E (DD) is a complex of d-dimer 
non-covalently associated with fragment E. This terminal 
plasmin digestion product of fully cross-linked fibrin binds 
t-PA and plasminogen with affinities to the same extent as 
fibrin. It is shown by using the complex E (DD) the enzy-
matic activity (plasminogen activation) of staphylokinase is 
increased up to 38 times [103].

Although, staphylokinase is highly fibrin-specific 
(Table 1), but it has fewer fibrinogenolytic properties than 
streptokinase. Systemic plasminogen degradation, α2-
antiplasmin consumption, and systemic fibrinogen activa-
tion using staphylokinase have not been observed [4]. The 
dosage is 15 mg for double bolus administration every half 
hour. Its production can be made easier due to its small size 
[35]. The optimized form of SAK sequence variant, which 
was called THR-174 and produced by ThromboGenics NV 
[104], indicated increased efficacy and safety profiles in the 
pre-clinical trials. Moreover, a significant decrease observed 
in immunogenicity in comparison with streptokinase and 
other staphylokinase variants.

Staphylokinase protein structure

X-ray refraction, dynamic light refraction, ultra-centrifuge, 
and UV circular dichroism spectroscopy indicate the solu-
tion structure of staphylokinase. Rotational radius, radia-
tion radius, maximum size, and sedimentation coefficient are 
2.3 nm, 2.12 nm, 10 nm, and 1.71 S, respectively, which rep-
resent an elongated form of staphylokinase [4]. This single-
chain polypeptide has a molecular weight of 15.5 kD [105] 
and does not have any significant homology with streptoki-
nase [106]. Staphylokinase comprises two folded domains 
with the same size. The mean value of the distance between 
domain’s centers of gravity equals 3.7 nm. In this solution, 
the mutual position in two domains is variable. That is why 
the shape of this molecule is like a flexible dumbbell [107]. 
According to electrophoresis on SDS-PAGE and isoelec-
tric point, several molecular forms of different molecular 
weight of staphylokinase have been identified [108, 109]. 

Apparently, low molecular weight forms of mature staphy-
lokinase lack amino-terminal residues. In a buffer environ-
ment, the interaction of plasminogen or plasmin with mature 
staphylokinase converts this protein into Sak-ΔN10 with the 
first ten residues truncated [110]. It has been shown that 
Sak-ΔN10 has a fibrinolytic activity similar to staphyloki-
nase. It was also found that amino acid at position 26 is 
useful for the activation of plasminogen by staphylokinase. 
Replacing this amino acid with arginine or valine leads to 
a lack of functional activity but replacing it with leucine 
or cysteine has little or no effect on the functional activity 
[110].

Knowledge of the three-dimensional structure of a protein 
permits the design of PEG attachment site(s) via computer 
modeling. Amino acid substitutions such as K35A, E65Q, 
K74R, E80A, D82A, T90A, E99D, T101S, E108A, K109A, 
K130T, and K135R were carried out along with substitu-
tion the Ser, found naturally at position 3 of staphylokinase, 
mutated into Cys. Then, the Cys was mono-PEGylated 
with different molecules of maleimide–PEG in molecular 
weights of 5, 10 or 20 kDa (namely SY 161-P5 or P10 or 
P20) which reduced antigenicity and prolonged plasma half-
life [4, 111–115]. Recently, the N-terminal lipid modifica-
tion of staphylokinase has enhanced the stability and activity 
of the SAK. This modification can help to its translocation 
across blood brain barriers and treatment of diseases like 
stroke [116].

Staphylokinase with thrombolytic, anti‑platelet 
and anti‑thrombin activities

Recent studies prove that activated platelets play a key role 
in thrombosis, formation of secondary clots and vessels re-
blocking. After thrombolytic treatment, the secondary clot is 
formed due to platelet aggregation [117]. When lysis of the 
clot occurs, the coagulation system becomes active, in addi-
tion activation and aggregation of platelets take place due 
to the release of large amounts of thrombin. Subsequently, 
the activated platelets inhibit fibrin lysis by tissue plasmi-
nogen activator via releasing the type 1 plasminogen activa-
tor inhibitor (PAI-1) in the blood circulation. Therefore, it 
leads to the re-blockage of the vessels [7]. Arginine, lysine 
and aspartic acid tripeptide (RGD) attached to the staphy-
lokinase can bind to the glycoprotein membrane receptor 
(GPIIb/IIIa) at the platelet surface and prevent fibrinogen 
binding to this receptor which results in no accumulation of 
activated platelets [6]. Snake venom [118] and F(ab’)2 frag-
ment of the monoclonal antibody 7E3 also pose as platelet 
inhibitors [119].

Various thrombin inhibitors such as hirudin and its deriv-
atives can be added to the recombinant staphylokinase to 
decrease the formation of secondary clot [120, 121]. Hiru-
din, obtained from leech saliva, is a potential inhibitor of the 
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thrombin-specific serine proteases which forms a stable non-
covalent complex with α-thrombin and prevents fibrinogen 
cleavage and fibrin formation by thrombin [120]. Hirudin 
consists of 63 amino acids with 3 sulfide bonds plus one 
O-glycosylated position in amino acid 45 and one modified 
amino acid in the position 62 called sulfotyrosin. This inhib-
itor also plays a role in preventing the accumulation of plate-
let associated with thrombin [120]. Components derived 
from hirudin such as 20 amino acids sequence (hirulog) 
[6], amino acid 12 fragment of hirudin (HV) [122], hirogen 
(N-acetyl hirudin 53′-64′ with sulfato-Tyr63) and hirulog 1 
(d-Phe-Pro-Arg-Pro-(Gly)4 desulfato-Tyr63′-hirugen) [123] 
also play an important role in thrombin inhibition. Other 
thrombin inhibitors include fibrinopeptide A [124], dipetalin 
domains [125] and tsetse thrombin inhibitors (TTI) [126, 
127]. In addition, there are thrombin production inhibitors 
such as the recombinant anti-coagulant peptide of ticks and 
bed bugs [128] and recombinant activated protein [129].

Expression of staphylokinase in different hosts

The SAK gene has been cloned and expressed to varied 
levels in different expression systems like IPTG inducible 
E.coli BL21 [130, 131], salt induced E.coli GJ1158 [6], salt 
induced E. coli strain (DH5α) [132], IPTG containing E.coli 
JM 109 (DE3) [133], Bacillus subtilis [134, 135], methanol 
inducible yeast of pichia pastoris strain GS115 [7, 30, 136, 
137], Streptomyces lividans [138], methylotrophic yeast 
Hansenula polymorpha [139] and under control of various 
E.coli promoters viz., T7, lambda PR, tac and ptac, B. sub-
tilis promoters of P43, Pamy and PsacB, and P. pastoris 
AOX1 promoter.

Yeasts of S. cerevisiae and P. pastoris have a majority 
of N-linked glycosylation of the high-mannose type [140]. 
Prevention of hyper-glycosylation in the H. polymorpha and 
P. pastoris becomes an additional advantage of these expres-
sion systems over the traditional S. cerevisiae system [140, 
141]. Moreover, S. cerevisiae core oligosaccharides have 
terminal α-1,3 glycan linkages leading the hyper-antigenic 
nature of these proteins while P. pastoris may be similar to 
the glycoprotein structure of higher eukaryotes [142].

Drawback of N-glycosylation of exotic proteins with 
therapeutic usage like SAK originated from a prokaryote 
(S. aureus), expressed in P. pastoris could be resolved by 
using purification by concanavalin A column chromatogra-
phy [143] or treatment with Endo H [139] or adding glyco-
sylation inhibitors such as tunicamycin [137].

The levels of expression and characteristics of staphy-
lokinase or its multi-functional derivatives have been 
compared in various expression systems (Table 2). In this 
regard, the staphylokinase gene isolated from lysogenic S. 
aureus were cloned in pET-28a or pRSET-A and expressed 
in IPTG inducible E. coli strain BL21 [144–148] and salt 

inducible E. coli GJ1158 [6]. The recombinant and mature 
staphylokinase protein expressed in E. coli was extracted and 
analyzed by various methods and its thrombolytic activities 
were confirmed. In E. coli BL21, the expression of recombi-
nant staphylokinase led to the formation of inclusion bodies. 
Lee et al. (1998) obtained 20 mg/L of staphylokinase from 
the periplasmic space of E. coli [147]. Schlott et al. (1994) 
obtained 200 mg of staphylokinase per liter of fermentation 
broth [149]. In another study, Nguyen et al. (2014) obtained 
300 mg of staphylokinase per liter of culture medium [148]. 
Other expression levels included 70–500 mg/L suggested by 
Schlott et al. (1999) [150] and 2.8 g/L of fermentation broth, 
as suggested by Mandi et al. (2009) [151]. Ye et al. (1999) 
also expressed staphylokinase in the expression system 
of B.subtilis [135] and Cheng et al. (1998) expressed this 
protein in Streptomyces lividans [138]. A review of other 
studies shows that Apte-Deshpande et al. (2009) obtained 
a recombinant P. pastoris strain GS115 including multiple 
inserts of the staphylokinase gene for high level expression 
about 1 g/L. The addition of antibiotics such as tunicamycin 
during the induction phase resulted in the expression of non-
glycosylated r-sak of about 15 kDa. It was shown that prior 
to deglycosylation, the activity was lower than 2.5 mg U/mg 
but after the deglycosylation, this activity reached 95 U/mg 
[137]. Pulicherla et al. (2011) isolated the staphylokinase 
gene from the wound samples and the fibrinolytic activity 
was determined using a lysis test after E. coli salt-induced 
expression [152].

Miele et al. expressed staphylokinase in both E. coli 
and P. pastoris GS115. They showed that Pichia glyco-
sylated staphylokinase in asparagine-28 position. The 
ratio of glycosylated to non-glycosylated forms was 5 to 
6, separated by the cancavalin-A column. The SakSTAR 
variant was obtained highly functional at a concentration 
of 300–400 mg/L of purified protein from the expression 
system of E.coli. In addition, 60 mg/L of functional non-
glycosylated SakSTAR and 50 mg/L of non-functional gly-
cosylated one were also obtained from the P. pastoris strain 
GS115 [143].

Nguyen et al. (2012) observed the activity of 20658 U/
mg after expression of SAKфC variant in P. pastoris strain 
GS115 [30] while they expressed this staphylokinase variant 
with activity of 15175 U/mg in E. coli [131]. Staphylokinase 
expression in Pichia strain was reported in the 100% glyco-
sylated form. After condition optimization, the temperature 
of 37 °C for the staphylokinase was found to be the optimum 
temperature in both E. coli and P. pastoris. Temperature 
stability of staphylokinase in both expression systems was 
20–45 °C. The optimum pH of the staphylokinase expressed 
in P. pastoris and E. coli were 7 and 7.5 in phosphate buffer 
and,8 and 9 in the Tris buffer, respectively [30, 131].

Faraji et al. (2017), after codon optimization, expressed 
the SAKфC in P. pastoris strains KM71H and GS115. The 



Molecular Biology Reports	

1 3

Ta
bl

e 
2  

O
ve

rv
ie

w
 o

f t
he

 e
xp

re
ss

io
n 

le
ve

ls
 a

nd
 p

ro
pe

rti
es

 o
f s

ta
ph

yl
ok

in
as

e 
or

 it
s m

ul
ti-

fu
nc

tio
na

l d
er

iv
at

iv
es

 in
 v

ar
io

us
 e

xp
re

ss
io

n 
sy

ste
m

s

Re
fe

re
nc

es
Pr

ot
ei

n
Ex

pr
es

si
on

 sy
ste

m
Y

ie
ld

 (m
g/

Lb
ro

th
)

R
at

io
 o

f g
ly

co
sy

la
te

d/
no

n 
gl

yc
os

yl
at

ed
 fo

rm
s

C
ha

ra
ct

er
iz

at
io

n
C

om
m

en
ts

[1
16

]
rS

A
K

Pi
ch

ia
 p

as
to

ri
s

N
ea

rly
 1

 g
/L

M
os

tly
 g

ly
co

sy
la

te
d

Th
ro

m
bo

ly
tic

 a
ct

iv
ity

 o
f 

2.
5 

U
/m

g 
fo

r g
ly

co
sy

la
te

d 
fo

rm
 a

nd
 9

5 
U

/m
g 

fo
r 

no
n-

 g
ly

co
sy

la
te

d 
fo

rm
 

ac
hi

ev
ed

Ve
ry

 h
ig

h 
le

ve
l e

xp
re

ss
io

n 
du

e 
to

 m
ul

tip
le

 in
se

rti
on

s 
of

 th
e 

SA
K

 g
en

e 
in

to
 P

. 
pa

sto
ri

s g
en

om
e 

w
ith

 
ne

gl
ig

ib
le

 p
la

sm
in

og
en

 
ac

tiv
at

io
n 

ac
tiv

ity
 a

ch
ie

ve
d.

 
Pl

as
m

in
og

en
 a

ct
iv

at
io

n 
ac

tiv
ity

 w
as

 m
ea

su
re

d 
by

 
us

in
g 

S2
25

1 
as

 su
bs

tra
te

[1
25

]
rS

A
K

P.
 p

as
to

ri
s

31
0 

m
g/

L
M

os
tly

 g
ly

co
sy

la
te

d
En

zy
m

at
ic

 a
ct

iv
ity

 w
as

 
21

04
2 

U
/m

g 
an

d 
90

02
 

U
/m

g 
fo

r p
ur

ifi
ed

 a
nd

 
su

pe
rn

at
an

t p
ro

te
in

s, 
re

sp
ec

tiv
el

y.
 D

eg
ly

co
sy

la
-

tio
n 

by
 u

si
ng

 tu
ni

ca
m

yc
in

 
in

 c
ul

tu
re

 m
ed

iu
m

, d
ay

s 2
 

an
d 

3 
en

ha
nc

ed
 th

e 
ac

tiv
-

ity
 to

 4
3,

85
8 

U
/m

g

H
ig

h 
le

ve
l e

xp
re

ss
io

n 
du

e 
to

 c
od

on
 o

pt
im

iz
at

io
n 

ac
hi

ev
ed

. F
ib

rin
ol

yt
ic

 a
ct

iv
-

ity
 w

as
 m

ea
su

re
d 

ac
co

rd
in

g 
to

 w
el

l f
us

io
n 

m
et

ho
d 

w
ith

 
str

ep
to

ki
na

se
 a

s s
ta

nd
ar

d

[1
24

]
rS

A
K

P.
 p

as
to

ri
s

33
–5

0 
m

g/
L

ra
tio

 o
f 5

:6
50

 m
g/

L 
of

 n
on

- f
un

ct
io

na
l 

gl
yc

os
yl

at
ed

 fo
rm

 a
nd

 
60

 m
g/

L 
of

 fu
nc

tio
na

l 
no

n-
gl

yc
os

yl
at

ed
 fo

rm
 

ac
hi

ev
ed

Pl
as

m
in

og
en

 a
ct

iv
at

io
n 

ac
tiv

-
ity

 w
as

 m
ea

su
re

d 
by

 u
si

ng
 

S2
25

1 
as

 su
bs

tra
te

.

[1
24

]
rS

A
K

Es
ch

er
ic

hi
a 

co
li

30
0–

40
0 

m
g/

L 
(p

ur
ifi

ed
)

O
nl

y 
no

n-
gl

yc
os

yl
at

ed
 fo

rm
Fu

nc
tio

na
l n

on
 -g

ly
co

-
sy

la
te

d
Pl

as
m

in
og

en
 a

ct
iv

at
io

n 
ac

tiv
-

ity
 w

as
 m

ea
su

re
d 

by
 u

si
ng

 
S2

25
1 

as
 su

bs
tra

te
[1

09
]

rS
A

K
P.

 p
as

to
ri

s
19

 m
g/

L
gl

yc
os

yl
at

ed
En

zy
m

at
ic

 a
ct

iv
ity

 o
f 

20
,6

58
 U

/m
g 

of
 p

ur
ifi

ed
 

pr
ot

ei
n 

ac
hi

ev
ed

Pl
as

m
in

og
en

 a
ct

iv
at

io
n 

ac
tiv

ity
 w

as
 m

ea
su

re
d 

by
 

us
in

g 
A

A
S 

as
 su

bs
tra

te
. 

Su
rp

ris
in

gl
y,

 h
ig

h 
ac

tiv
ity

 
of

 g
ly

co
sy

la
te

d 
fo

rm
 w

as
 

re
po

rte
d

[1
14

]
SA

K
-R

G
D

-K
2-

H
iru

l
P.

 p
as

to
ri

s
8.

21
 m

g/
L

N
ot

 d
efi

ne
d

SA
K

-R
G

D
-K

2-
H

iru
l, 

in
 

co
m

pa
ris

on
 w

ith
 -S

A
K

 
an

d 
SA

K
-R

G
D

-K
2-

H
ir,

 is
 

a 
fa

ste
r-a

ct
in

g 
an

d 
m

or
e 

po
te

nt
 fo

rm
 a

nd
 it

 is
 b

et
te

r 
in

 te
rm

s o
f a

nt
ith

ro
m

bi
n 

an
d 

an
tip

la
te

le
t p

ro
pe

rti
es

Effi
ci

en
cy

 o
f b

lo
ck

in
g 

th
e 

pl
at

el
et

–p
la

te
le

t i
nt

er
ac

tio
n 

by
 S

A
K

-R
G

D
-K

2-
H

iru
l 

w
as

 a
ro

un
d 

7%
 b

et
te

r t
ha

n 
th

at
 o

f S
A

K
-R

G
D

-K
2-

H
ir 

an
d 

co
m

pa
ra

bl
e 

to
 th

at
 o

f 
th

e 
RG

D
 se

qu
en

ce
 a

lo
ne



	 Molecular Biology Reports

1 3

Ta
bl

e 
2  

(c
on

tin
ue

d)

Re
fe

re
nc

es
Pr

ot
ei

n
Ex

pr
es

si
on

 sy
ste

m
Y

ie
ld

 (m
g/

Lb
ro

th
)

R
at

io
 o

f g
ly

co
sy

la
te

d/
no

n 
gl

yc
os

yl
at

ed
 fo

rm
s

C
ha

ra
ct

er
iz

at
io

n
C

om
m

en
ts

[1
08

]
St

ap
hy

lo
ki

na
se

-H
iru

lo
g

E.
co

li
Q

ua
nt

ity
 o

f t
he

 p
ur

ifi
ed

 
pr

ot
ei

n 
w

as
 9

13
 m

g/
L

O
nl

y 
no

n-
gl

yc
os

yl
at

ed
 fo

rm
C

om
pa

re
d 

to
 2

19
10

 U
/m

L 
of

 S
A

K
, t

he
 fi

br
in

ol
yt

ic
 

ac
tiv

ity
 o

f p
ur

ifi
ed

 sa
k 

va
ria

nt
 w

as
 2

18
25

 U
/

m
L 

w
ith

 sp
ec

ifi
c 

an
ti-

th
ro

m
bi

n 
ac

tiv
ity

 o
f 1

20
0 

A
TU

/m
g

C
ol

d 
sh

oc
k 

ex
pr

es
si

on
 v

ec
to

r 
pC

O
LD

I i
nd

uc
ed

 a
t t

he
 

lo
w

 te
m

pe
ra

tu
re

 (1
5 

°C
) 

pr
od

uc
ed

 so
lu

bl
e 

pr
ot

ei
n

[1
34

]
SA

K
- T

hr
om

bi
n 

re
co

gn
iti

on
 

pe
pt

id
e-

H
iru

di
n 

(H
V

2)
E.

co
li

1.
48

 g
/L

O
nl

y 
no

n-
gl

yc
os

yl
at

ed
 fo

rm
Fe

d-
ba

tc
h 

fe
rm

en
ta

tio
n 

in
 

co
m

pl
ex

 m
ed

iu
m

 w
ith

 
fe

ed
in

g 
m

ed
iu

m
 in

cl
ud

in
g 

gl
uc

os
e +

 m
ag

ne
si

um
 

su
lfa

te
, y

ea
st 

ex
tra

ct
 a

nd
 

try
pt

on
e 

at
 4

0 
L 

fe
rm

en
te

r 
pr

od
uc

ed
 fi

br
in

ol
yt

ic
 

ac
tiv

ity
 u

p 
to

 1
.5

3 ×
 10

5  
IU

/L

O
pt

im
um

 c
on

di
tio

n 
w

er
e 

su
cc

es
sf

ul
ly

 sc
al

ed
 u

p 
to

 
40

 L
 fe

rm
en

te
r.F

ib
rin

ol
yt

ic
 

ac
tiv

iti
es

 w
as

 d
et

er
m

in
ed

 
on

 a
 fi

br
in

 p
la

te
 b

y 
us

in
g 

SA
K

 (1
 ×

 10
4  IU

/m
g)

 a
s 

st
an

da
rd

[1
22

]
rS

A
K

E.
co

li
2.

8 
g/

L
O

nl
y 

no
n-

gl
yc

os
yl

at
ed

 fo
rm

Th
e 

pu
rifi

ed
 S

A
K

 p
ro

te
in

 
re

ve
al

ed
 p

la
sm

in
og

en
 

ac
tiv

at
io

n 
ac

tiv
ity

–

[6
]

SA
K

-R
G

D
- H

iru
lo

g
E.

co
li

Q
ua

nt
ity

 o
f t

he
 p

ur
ifi

ed
 

pr
ot

ei
n 

w
as

 2
70

 m
g/

L
O

nl
y 

no
n-

gl
yc

os
yl

at
ed

 fo
rm

Ve
ry

 h
ig

hl
y 

ac
tiv

ity
 

10
27

30
 U

/m
g 

of
 S

A
K

-
RG

D
- H

iru
lo

g 
co

m
pa

re
d 

to
10

29
55

 IU
/m

g 
of

 S
A

K
 

ac
hi

ev
ed

. T
he

 a
nt

ith
ro

m
-

bi
n 

an
d 

an
ti-

ag
gr

eg
at

io
n 

ac
tiv

ity
 o

f S
A

K
-R

G
D

- 
H

iru
lo

g 
w

as
 si

gn
ifi

ca
nt

ly
 

hi
gh

er
 th

an
 S

A
K

It 
w

as
 e

xp
re

ss
ed

 in
 o

sm
ot

i-
ca

lly
 in

du
ci

bl
e 

E.
 c

ol
i 

G
J1

15
8 

as
 so

lu
bl

e 
fo

rm
. 

Fi
br

in
ol

yt
ic

 a
ct

iv
ity

 w
as

 
m

ea
su

re
d 

ac
co

rd
in

g 
to

 w
el

l 
fu

si
on

 m
et

ho
d 

w
ith

 st
re

pt
o-

ki
na

se
 a

s s
ta

nd
ar

d

[1
09

]
rS

A
K

E.
co

li
30

0 
m

g/
L

O
nl

y 
no

n-
gl

yc
os

yl
at

ed
 fo

rm
15

17
5 

U
/m

g 
of

 p
ur

ifi
ed

 
pr

ot
ei

n 
ac

hi
ev

ed
Pl

as
m

in
og

en
 a

ct
iv

at
io

n 
ac

tiv
-

ity
 w

as
 m

ea
su

re
d 

by
 u

si
ng

 
A

A
S 

as
 su

bs
tra

te
[1

20
]

rS
A

K
E.

co
li

ap
pr

ox
im

at
el

y 
20

0 
m

g
O

nl
y 

no
n-

gl
yc

os
yl

at
ed

 fo
rm

In
tra

ve
no

us
 a

dm
in

ist
ra

-
tio

n 
of

 1
0 

m
g 

rS
A

K
 o

ve
r 

30
 m

in
 in

 fi
ve

 p
at

ie
nt

s 
w

ith
 a

cu
te

 m
yo

ca
rd

ia
l 

in
fa

rc
tio

n 
in

du
ce

d 
co

m
pl

et
e 

co
ro

na
ry

 a
rte

ry
 

re
ca

na
liz

at
io

n,
 w

ith
ou

t 
as

so
ci

at
ed

 fi
br

in
og

en
 

de
gr

ad
at

io
n

N
eu

tra
liz

in
g 

an
tib

od
ie

s w
as

 
ap

pe
ar

ed
 in

 th
e 

pl
as

m
a 

of
 

al
l p

at
ie

nt
s w

ith
in

 1
2 

to
 

20
 d

ay
s



Molecular Biology Reports	

1 3

Ta
bl

e 
2  

(c
on

tin
ue

d)

Re
fe

re
nc

es
Pr

ot
ei

n
Ex

pr
es

si
on

 sy
ste

m
Y

ie
ld

 (m
g/

Lb
ro

th
)

R
at

io
 o

f g
ly

co
sy

la
te

d/
no

n 
gl

yc
os

yl
at

ed
 fo

rm
s

C
ha

ra
ct

er
iz

at
io

n
C

om
m

en
ts

[1
21

]
rS

A
K

E.
co

li
Q

ua
nt

ity
 o

f t
he

 p
ur

ifi
ed

 p
ro

-
te

in
 w

as
 7

0–
50

0 
m

g/
L.

O
nl

y 
no

n-
gl

yc
os

yl
at

ed
 fo

rm
Th

e 
om

is
si

on
 o

f 1
0 

N
-te

r-
m

in
al

 a
m

in
o 

ac
id

s h
ad

 
no

 e
ffe

ct
 o

n 
pl

as
m

in
og

en
 

ac
tiv

at
io

n.
 H

ow
ev

er
, a

dd
i-

tio
na

l d
el

et
io

n 
of

 L
ys

11
 

le
d 

to
 th

e 
el

im
in

at
io

n 
of

 
pl

as
m

in
og

en
 a

ct
iv

at
io

n

Su
bs

tit
ut

io
n 

of
 L

ys
10

 w
ith

 
H

is
, L

ys
11

 w
ith

 H
is

, L
ys

11
 

w
ith

 C
ys

 a
bo

lis
he

d 
pl

as
m

i-
no

ge
n 

ac
tiv

at
io

n

[1
19

]
rS

A
K

E.
co

li
15

 m
g/

L 
in

to
 p

er
ip

la
sm

 a
nd

 
5 

m
g/

L 
to

 e
xt

ra
ce

llu
la

r 
m

ed
ia

O
nl

y 
no

n-
gl

yc
os

yl
at

ed
 fo

rm
Ex

pr
es

si
on

, s
ec

re
tio

n 
an

d 
ac

tiv
ity

 o
f r

SA
K

 w
as

 c
on

-
fir

m
ed

 b
y 

th
e 

pl
at

e 
as

sa
y 

an
d 

pl
as

m
in

og
en

-c
ou

pl
ed

 
ch

ro
m

og
en

ic
 su

bs
tra

te
 

as
sa

y

–

[1
03

]
PL

A
TS

A
K

 (S
A

K
-R

G
D

-H
ir-

ud
in

-F
ib

rin
op

ep
tid

e 
A

)
E.

co
li

10
 m

g 
sc

al
e 

(T
he

 st
an

da
rd

 
pu

rifi
ca

tio
n 

ex
pe

rim
en

t 
yi

el
de

d 
ab

ou
t 1

 m
g 

pe
r 

20
0 

m
L 

cu
ltu

re
)

O
nl

y 
no

n-
gl

yc
os

yl
at

ed
 fo

rm
D

es
pi

te
 sl

ig
ht

ly
 d

ec
re

as
e 

in
 

fib
rin

ol
yt

ic
 a

ct
iv

ity
 c

om
-

pa
re

d 
to

 S
A

K
, t

he
 p

ur
ifi

ed
 

fu
si

on
 p

ro
te

in
 si

gn
ifi

-
ca

nt
ly

 le
ng

th
en

ed
 a

PT
T 

an
d 

TT
 a

nd
 in

hi
bi

te
d 

th
e 

am
id

ol
yt

ic
 a

ct
iv

ity
 o

f 
th

ro
m

bi
n

Pl
at

el
et

 a
gg

re
ga

tio
n 

w
as

 
no

t m
ar

ke
dl

y 
in

hi
bi

te
d 

by
 

PL
A

TS
A

K
, p

ro
ba

bl
y 

du
e 

to
 th

e 
un

fa
vo

ra
bl

e 
th

re
e 

di
m

en
si

on
al

 st
ru

ct
ur

e,
 w

ith
 

th
e 

A
rg

-G
ly

-A
sp

 se
qu

en
ce

 
bu

rie
d 

in
si

de

[1
35

]
rS

A
K

E.
co

li,
 B

. s
ub

til
is

, S
tre

pt
o-

co
cc

us
 sa

ng
ui

s
10

 m
g 

sc
al

e
O

nl
y 

no
n-

gl
yc

os
yl

at
ed

 fo
rm

In
 te

rm
s o

f s
er

ol
og

ic
al

 
su

rv
ey

s, 
th

e 
in

ve
sti

ga
te

d 
SA

K
 o

bt
ai

ne
d 

fro
m

 h
et

er
-

ol
og

ou
s h

os
ts

 w
as

 si
m

ila
r 

to
 th

at
 o

f a
ut

he
nt

ic
 S

A
K

 
ob

ta
in

ed
 fr

om
 S

. a
ur

eu
s

Th
e 

sa
k4

2D
 g

en
e 

w
as

 
ex

pr
es

se
d 

an
d 

se
cr

et
ed

 
m

os
t e

ffi
ci

en
tly

 b
y 

B.
 

su
bt

ili
s c

el
ls

 re
du

ce
d 

in
 

ex
op

ro
te

as
e 

pr
od

uc
tio

n 
(2

5 
m

g 
SA

K
/L

 o
f c

ul
tu

re
 

su
pe

rn
at

an
t)

[8
8]

rS
A

K
B.

su
bt

ili
s

10
0 

m
g 

sc
al

e
O

nl
y 

no
n-

gl
yc

os
yl

at
ed

 fo
rm

Th
e 

hi
gh

es
t l

ev
el

 o
f s

pe
ci

fic
 

ex
pr

es
si

on
 o

f S
A

K
 

(m
g/

L/
O

.D
.) 

in
 st

ra
in

 
W

B
70

0 
w

as
 9

.5
 o

bt
ai

ne
d 

at
 2

00
 rp

m
 w

ith
 O

.D
 6

. 
A

dd
in

g 
su

cr
os

e 
at

 O
.D

. 
4 

(1
00

 g
/h

 fo
r 4

 h
) l

ed
 to

 
O

.D
 2

8.
4 

w
ith

 S
A

K
 y

ie
ld

 
of

 2
55

 m
g/

L

Th
e 

hi
gh

es
t S

A
K

 y
ie

ld
 u

si
ng

 
str

ai
n 

W
B

70
0 

at
 8

 h
 a

fte
r 

in
oc

ul
at

io
n 

w
as

11
3 

m
g/

L 
pr

ov
id

ed
 a

t h
ig

h 
ce

ll 
de

n-
si

ty
 (O

D
 1

5.
2)

 w
ith

 a
gi

ta
-

tio
n 

sp
ee

d 
40

0 
R

PM



	 Molecular Biology Reports

1 3

Ta
bl

e 
2  

(c
on

tin
ue

d)

Re
fe

re
nc

es
Pr

ot
ei

n
Ex

pr
es

si
on

 sy
ste

m
Y

ie
ld

 (m
g/

Lb
ro

th
)

R
at

io
 o

f g
ly

co
sy

la
te

d/
no

n 
gl

yc
os

yl
at

ed
 fo

rm
s

C
ha

ra
ct

er
iz

at
io

n
C

om
m

en
ts

[1
13

]
rS

A
K

B.
su

bt
ili

s
33

7 
m

g/
L

O
nl

y 
no

n-
gl

yc
os

yl
at

ed
 fo

rm
Th

e 
us

e 
of

 st
ra

in
 o

f p
ro

-
te

as
e 

de
fic

ie
nt

 W
B

70
0 

in
cr

ea
se

d 
ex

pr
es

si
on

 o
f 

st
ap

hy
lo

ki
na

se
 w

ith
ou

t 
N

- t
er

m
in

al
 h

et
er

og
en

ei
ty

, 
fro

m
 th

e 
su

cr
os

e-
in

du
ci

-
bl

e 
pl

as
m

id

–

[1
23

]
rS

A
K

E.
co

li
N

ot
 d

efi
ne

d
O

nl
y 

no
n-

gl
yc

os
yl

at
ed

 fo
rm

Th
e 

he
at

ed
 p

la
sm

a 
ag

ar
 

pl
at

e 
te

st 
sh

ow
ed

 v
er

y 
go

od
 c

le
ar

an
ce

 z
on

es
 

af
te

r o
ve

rn
ig

ht
 in

cu
ba

-
tio

n 
th

ro
ug

h 
in

du
ct

io
n.

 
In

cu
ba

tio
n 

fo
r 4

8 
h 

le
d 

to
 

le
ak

y 
ex

pr
es

si
on

 o
f S

A
K

 
of

 u
n 

in
du

ce
d 

E.
 c

ol
i

Th
e 

tu
be

 te
st 

sh
ow

ed
 n

ea
rly

 
70

%
 re

si
du

al
 c

lo
t w

ei
gh

t 
w

ith
in

 tw
o 

ho
ur

s o
f c

lo
t 

in
cu

ba
te

d 
w

ith
 c

el
l l

ys
at

es

[9
1]

SA
K

-R
G

D
-K

2-
H

ir
Sc

hi
zo

sa
cc

ha
ro

m
yc

es
 

po
m

be
N

ot
 d

efi
ne

d
N

ot
 d

efi
ne

d
A

 h
ig

he
r p

ot
en

tia
l o

f 
SA

K
-R

G
D

-K
2-

H
ir 

w
as

 
ob

se
rv

ed
 a

cc
om

pa
ni

ed
 b

y 
fa

ste
r a

nd
 d

ee
pe

r l
ys

is
 o

f 
12

5I
-la

be
le

d 
fib

rin
 c

lo
ts

 
in

 h
um

an
. T

he
 p

ot
en

cy
 

of
 th

ro
m

bi
n 

in
hi

bi
tio

n 
by

 th
e 

hi
ru

di
n 

pa
rt 

of
 

th
e 

re
co

m
bi

na
nt

 fu
si

on
 

pr
ot

ei
n 

SA
K

-R
G

D
-K

2-
H

ir 
w

as
 th

e 
sa

m
e 

as
 th

at
 

of
 r-

H
ir 

al
on

e

Si
m

ila
r i

nh
ib

iti
on

 o
f p

la
te

le
t 

ag
gr

eg
at

io
n 

w
as

 d
et

ec
te

d 
fo

r b
ot

h 
SA

K
-R

G
D

-K
2-

H
ir 

an
d 

RG
D

 a
t l

ow
 c

on
ce

n-
tra

tio
ns

 w
he

re
as

 a
t h

ig
h 

co
nc

en
tra

tio
ns

, t
he

 in
hi

bi
-

to
ry

 e
ffe

ct
 w

as
 d

ec
re

as
ed

 
fo

r S
A

K
-R

G
D

-K
2-

H
ir 

in
 

co
m

pa
ris

on
 w

ith
 R

D
G



Molecular Biology Reports	

1 3

Ta
bl

e 
2  

(c
on

tin
ue

d)

Re
fe

re
nc

es
Pr

ot
ei

n
Ex

pr
es

si
on

 sy
ste

m
Y

ie
ld

 (m
g/

Lb
ro

th
)

R
at

io
 o

f g
ly

co
sy

la
te

d/
no

n 
gl

yc
os

yl
at

ed
 fo

rm
s

C
ha

ra
ct

er
iz

at
io

n
C

om
m

en
ts

[1
32

]
RG

D
-h

iru
di

n
P.

 p
as

to
ri

s
A

bo
ut

 1
.5

 g
 o

f p
ur

ifi
ed

 
RG

D
-h

iru
di

n 
w

as
 g

en
er

-
at

ed
 fr

om
 1

 L
 c

ul
tu

re

O
nl

y 
no

n-
gl

yc
os

yl
at

ed
 fo

rm
Th

ro
m

bi
n 

ac
tiv

ity
 w

as
 o

ve
r 

12
,0

00
 A

TU
/m

g.
 T

he
 

ex
pr

es
si

on
 p

ro
du

ct
 in

 th
e 

cu
ltu

re
 w

as
 u

p 
to

 3
50

0 
A

TU
/m

L.
 T

T,
 P

T,
 a

nd
 

aP
TT

 (i
n 

th
e 

sa
m

e 
w

ay
 

as
 w

t- 
hi

ru
di

n)
 w

er
e 

pr
o-

lo
ng

ed
 b

y 
RG

D
-h

iru
di

n,
 

bu
t j

us
t R

G
D

-h
iru

di
n 

w
as

 
ab

le
 to

 in
hi

bi
t t

he
 P

A
G

m
. 

A
cc

or
di

ng
 to

 h
ist

op
at

ho
-

lo
gi

ca
l a

na
ly

se
s, 

RG
D

-
hi

ru
di

n,
 c

om
pa

re
d 

w
ith

 
w

t-h
iru

di
n,

 h
ad

 a
 g

re
at

er
 

eff
ec

t (
tw

o 
or

 th
re

e 
tim

es
 

m
or

e 
th

an
 th

at
 o

f w
t-

hi
ru

di
n)

 o
n 

th
e 

th
ro

m
bo

-
si

s p
re

ve
nt

io
n

Th
ro

m
bi

n 
ac

tiv
ity

 w
as

 
de

te
rm

in
ed

 b
y 

fib
rin

og
en

 
so

lid
ifi

ca
tio

n 
as

sa
y

[1
27

]
M

at
ur

e 
sa

k 
- H

iru
lo

g
E.

 c
ol

i
10

08
1 

to
 1

99
28

 U
/m

L
O

nl
y 

no
n-

gl
yc

os
yl

at
ed

 fo
rm

B
as

ed
 o

n 
ta

gu
ch

i d
es

ig
n 

an
d 

th
e 

fu
rth

er
 o

pt
im

iz
a-

tio
n 

us
in

g 
re

sp
on

se
 su

r-
fa

ce
 m

et
ho

do
lo

gy
 w

ith
 3

0 
ex

pe
rim

en
ts

, e
nz

ym
at

ic
 

ac
tiv

ity
 in

cr
ea

se
d 

hi
gh

ly
 

by
 1

.3
2 

fo
ld

s (
75

80
 to

 
10

,0
81

 U
/m

L)
 a

nd
 y

ie
ld

 
by

 1
.9

8 
fo

ld
s (

10
08

1 
to

 
19

92
8 

U
/m

L)
. G

lu
co

se
, 

K
2H

PO
4,

 T
M

M
 a

nd
 

K
H

2P
O

4 
w

er
e 

th
e 

m
os

t 
in

flu
en

ci
ng

 p
ar

am
et

er
s

Th
e 

si
gn

ifi
ca

nc
e 

of
 d

iff
er

-
en

t f
ac

to
rs

 o
f c

ul
tu

re
 w

as
 

re
ve

al
ed

 b
y 

Ta
gu

ch
i (

7 
fa

ct
or

s i
nc

lu
di

ng
 g

lu
co

se
, 

K
2H

PO
4,

 T
M

M
, K

H
2P

O
4,

 
N

H
4C

l, 
ye

as
t e

xt
ra

ct
 a

nd
 

M
gS

O
4)

[1
15

]
SA

K
-R

G
D

P.
 p

as
to

ri
s a

nd
 E

. c
ol

i
N

ot
 d

efi
ne

d
O

nl
y 

no
n-

gl
yc

os
yl

at
ed

 fo
rm

Th
e 

re
co

m
bi

na
nt

 fu
si

on
 

pr
ot

ei
n 

sh
ow

ed
 a

n 
op

tim
um

 te
m

pe
ra

tu
re

 o
f 

37
 °C

 a
nd

 it
 w

as
 st

ab
le

 in
 

a 
te

m
pe

ra
tu

re
 ra

ng
e 

of
 3

0 
to

 4
2 

°C
. T

he
 e

xp
re

ss
io

n 
of

 th
e 

SA
K

 R
G

D
 fr

om
 

P.
 p

as
to

ri
s w

as
 th

e 
sa

m
e 

ex
pr

es
si

on
 a

s E
. c

ol
i

Fi
br

in
ol

yt
ic

 a
ct

iv
ity

 w
as

 
fo

un
d 

ac
co

rd
in

g 
to

 w
el

l 
fu

si
on

 m
et

ho
d



	 Molecular Biology Reports

1 3

Ta
bl

e 
2  

(c
on

tin
ue

d)

Re
fe

re
nc

es
Pr

ot
ei

n
Ex

pr
es

si
on

 sy
ste

m
Y

ie
ld

 (m
g/

Lb
ro

th
)

R
at

io
 o

f g
ly

co
sy

la
te

d/
no

n 
gl

yc
os

yl
at

ed
 fo

rm
s

C
ha

ra
ct

er
iz

at
io

n
C

om
m

en
ts

[1
28

]
H

iru
di

n 
E.

C
oi

l- 
SA

K
 

K
.C

oi
l h

et
er

od
im

er
B.

 su
bt

ili
s

50
 m

g/
L 

(u
nd

er
 th

e 
co

-
cu

lti
va

tio
n 

co
nd

iti
on

)
O

nl
y 

no
n-

gl
yc

os
yl

at
ed

 fo
rm

H
E-

SA
K

K
 w

as
 c

ap
ab

le
 o

f 
ta

rg
et

in
g 

th
ro

m
bi

n-
ric

h 
fib

rin
 c

lo
ts

 a
nd

 in
hi

bi
t-

in
g 

cl
ot

-b
ou

nd
 th

ro
m

bi
n 

ac
tiv

ity
 c

om
pa

ra
bl

e 
w

ith
 

th
ei

r p
ar

en
t m

ol
ec

ul
es

A
S 

co
m

pa
re

d 
to

 S
A

K
, H

E-
SA

K
K

 sh
or

te
ne

d 
21

 a
nd

 
30

%
, r

es
pe

ct
iv

el
y,

 ti
m

e 
re

qu
ire

d 
fo

r l
ys

in
g 

50
%

 o
f 

fib
rin

 c
lo

t i
n 

th
e 

ab
se

nc
e 

or
 p

re
se

nc
e 

of
 fi

br
in

og
en

. 
Th

at
 a

ls
o 

de
cr

ea
se

d 
at

 
le

as
t 1

2 
fo

ld
 c

on
ce

nt
ra

tio
n 

re
qu

ire
d 

fo
r 5

0%
 p

la
sm

a 
cl

ot
 ly

si
s

[1
18

]
SA

K
1,

 S
A

K
2

H
an

se
nu

la
 p

ol
ym

or
ph

a
N

ea
rly

 1
.1

 g
/L

St
ro

ng
er

 sm
ea

r-l
ik

e 
ba

nd
 

of
 g

ly
co

sy
la

te
d 

rS
A

K
-1

 
an

d 
w

ea
ke

r n
on

 sm
ea

r 
no

n-
gl

yc
os

yl
at

ed
 o

ne
 

w
as

 a
pp

ea
re

d 
al

on
g 

w
ith

 
SA

K
-2

 v
ar

ia
nt

 w
ith

 o
nl

y 
no

n-
gl

yc
os

yl
at

ed
 b

an
d

W
he

re
as

 e
nz

ym
at

ic
 a

ct
iv

-
ity

 o
f S

A
K

-1
 re

du
ce

d 
su

bs
ta

nt
ia

lly
, e

nz
ym

at
ic

 
ac

tiv
ity

 o
f S

A
K

2 
w

as
 

m
ea

su
re

d 
be

tw
ee

n 
56

.2
32

 
an

d 
58

.4
46

, d
ep

en
di

ng
 

on
 p

ro
du

ct
io

n 
sc

al
e 

in
 

fe
rm

en
te

r

En
zy

m
at

ic
 a

ct
iv

ity
 w

as
 

m
ea

su
re

d 
by

 u
si

ng
 S

A
K

 
re

fe
re

nc
e 

st
an

da
rd

 (S
A

K
 

ST
A

R
 9

4/
71

8)

[1
11

]
rS

A
K

E.
co

li
N

ot
 d

efi
ne

d
O

nl
y 

no
n-

gl
yc

os
yl

at
ed

 fo
rm

G
ro

w
th

 in
cr

ea
se

d 
in

 L
ur

ia
–

B
er

ta
ni

 a
ga

r c
on

ta
in

in
g 

IP
TG

 in
 a

 c
on

ce
nt

ra
-

tio
n 

of
 1

00
 g

/m
L 

an
d 

in
cu

ba
te

d 
at

 3
7 

C
° f

or
 

24
 h

. D
ia

m
et

er
 o

f z
on

e 
of

 
hy

dr
ol

ys
is

 w
as

 3
0 

m
m

 a
t 

37
 °C

, w
hi

le
 th

e 
di

am
et

er
 

w
as

 d
ec

re
as

ed
 a

bo
ve

 a
nd

 
un

de
r t

hi
s t

em
pe

ra
tu

re

En
zy

m
at

ic
 a

ct
iv

ity
 w

as
 fo

un
d 

ac
co

rd
in

g 
to

 w
el

l f
us

io
n 

m
et

ho
d

S2
25

1 
d-

va
ly

l-l
eu

cy
l-l

ys
in

e-
p-

ni
tro

an
ili

de
di

hy
dr

oc
hl

or
id

e,
 A

AS
 N

-(
p-

to
sy

l)-
gl

y-
pr

o-
ly

s 4
-n

itr
oa

ni
lid

e 
ac

et
at

e 
sa

lt



Molecular Biology Reports	

1 3

expression maximum reached up to 310 mg/L of the cul-
ture medium after 48-h stimulation with 3% methanol and 
remained steady until Day 5. The maximum activity of the 
enzyme was at pH 8.6 and 37 °C. It was highly active in 
the temperature range of 20–37 °C and pH range of 6.8–9. 
The specific activities of rSAK were measured as 9002 
and 21,042U/mg for the non-purified and purified proteins 
respectively. Further, Deglycosylation by using tunicamy-
cin in culture medium enhanced the activity to 43,858 U/
mg. According to western blot analysis, a prominent band of 
about 22 kDa and a weaker band of 18.6 kDa was observed. 
This suggested that secreted proteins were mostly glyco-
sylated [153].

Expression of multi‑functional staphylokinase derivatives 
in different hosts

Several chimeric proteins with enhanced staphylokinase 
properties, which benefit from thrombin inhibitor and 
platelet aggregation inhibitor, were produced to prevent re-
blockage of the vessels [6, 7, 112]. Different methods for 
optimizing the concentration of the contents of the medium 
also used to increase the production of staphylokinase vari-
ants with maximum fibrinolytic properties [154]. Van et al. 
(1997) designed PLATSAK with SAK linked to RGD as an 
anti-platelet in addition to hirudin and parts of fibrinopep-
tide A as thrombin inhibitor expressed in the E. coli. This 
combination showed a slight decrease in fibrinolytic activity; 
its anti-thrombin activity was high and anti-platelet activ-
ity was low [124]. In another study by Lian et al. (2003), 
staphylokinase and hirudin were linked through a pair of 
coiled-coil sequences acting as a heterodimer domain. A 
coiled-coil sequence enriched with lysine (K-coil) was added 
to the C-terminus of staphylokinase to produce SAK-K coil 
(SAKK). Continually, a coiled-coil sequence enriched with 
glutamic acid (E. coli) was added to the end of the C-ter-
minal of the hirudin to produce hirudin-E.coil (HE). This 
heterodimer molecule (HE-SAKK) was a potent thrombo-
lytic agent in comparison with staphylokinase confirmed 
by thrombin-rich fibrin and plasma clot lysis studies (under 
in vitro condition). As well as, this heterodimer could reduce 
clot reformation during fibrinolysis [155].

Chen et al. (2007) made a targeted mutagenesis in lysine 
35 staphylokinase and replaced it with arginine. In this 
study, RGD-SAK showed a higher tendency to platelet than 
staphylokinase. The thrombolytic activity and ADP-induced 
platelet anti-aggregation showed a dose-dependent behavior 
[156].

SAK-RGD-K2-Hir and SAK-RGD-K2-Hirul were 
developed by Szemraj (2005) in yeast Schizosaccharomy-
ces pombe and Kowalski (2009) in P. pastoris, respectively 
[7, 112]. In these structures, the kringle 2 domain of t-PA 
protein, which has a fibrin binding site, were added to 

staphylokinase along with RGD, hirudin or hirulog which 
caused a more fast-acting and higher potent thrombolytic 
agent in comparison with standard staphylokinase. Indeed, 
in addition to the activity of anti-thrombin and anti-platelet, 
the fibrinolytic activity also increased significantly in both 
fusion proteins compared to rSAK.

Wang et al. (2009) used only 12 amino acids of thrombin-
binding domain of hirudin (HV) and expressed the SAK-HV 
variant in E. coli BL21 (DE3) [122]. In another similar study, 
a fusion protein including functional small domain of hiru-
din variant 1 (HV1) was added to both N- and C-terminal of 
staphylokinase to produce SAK-HV1 and HV1-SAK. In this 
study, the rate of plasminogen activation by SAK was not 
changed by the presence of an additional N- or C-terminal 
peptide sequence. However, cleavage at N-terminal lysines 
made the N-terminal fusion unstable against plasmin [157]. 
Therefore, C-terminal fusions created stable configurations 
for reasonable development of improved thrombolytic agents 
based on staphylokinase [157, 158].

Mo et al. (2009), fused hirudin and RGD along with 
SAK-hirudin expressed at high-level in P. Pastoris [159]. 
The anti-thrombin activity of the purified RGD-hirudin and 
SAK-hirudin were 12000 U/mg, which was equivalent to 
wild-type (wt), but only r-RGD-hirudin had an inhibitory 
effect on ADP-induced platelet aggregation. In animal mod-
els, SAK-hirudin and r-RGD-hirudin were three times more 
effective than wild type hirudin in preventing thrombosis. 
Animals injected with r-RGD-hirudin increased thrombin 
time (TT), prothrombin time (PT), and activated partial 
thromboplastin time (aPTT), that were similar to wt-hirudin, 
but only r-RGD-hirudin was able to inhibit platelets aggrega-
tion rate maximum (PAGm) [159].

Pulicherla et al. (2012) also produced staphylokinase 
linked to RGD in methanol-induced P. pastoris strain 
GS115, which had a good thrombolytic activity [136]. After 
adding RGD motif using site-directed mutagenesis to staphy-
lokinase, biochemical analysis revealed that RGD-SAK has a 
fibrinolytic activity similar to that of staphylokinase. RGD-
SAK had a greater tendency to platelet binding under the 
in vitro condition than staphylokinase. A platelet-rich clot 
lysis test, in vitro, showed that RGD-SAK has a higher lysis 
property than staphylokinase. There was a significant reduc-
tion in the amount of concentration needed to obtain 50% 
platelet-rich clot lysis (C50) in different concentrations of 
RGD-SAK in comparison with SAK. RGD-SAK inhibited 
ADP-induced platelet aggregation while staphylokinase had 
a negligible effect. In fact, RGD-SAK represented a bifunc-
tion which caused both lysis of platelet-rich clots and inhibi-
tion of platelets aggregation. On this basis, it was concluded 
that the addition of RGD may reduce vessel re-clotting [4]. 
Pulicherla et al. (2013) also expressed the chimeric staphy-
lokinase (SAK-RGD-Hirulog) in salt-inducible E. coli strain 
(GJ1158). The fibrinolytic activity of the fusion type was 
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very high, along with non-fusion one. SAK had a specific 
activity of 102,955 U/mg while the fusion type had a specific 
activity of 102,730 U/mg. There was no significant differ-
ence in the activity of these two proteins. Also, the fusion 
one showed significantly additional anti-thrombin and anti-
platelet activities [6, 160].

Kotra et al. (2013) expressed staphylokinase with hiru-
log as a soluble (without inclusion body) at a high level 
(913 mg/mL) of E. coli expression system. In this study, a 
pCold1 vector that induces expression at 15 °C by IPTG was 
used instead of pET28a + . As a result, fibrinolytic activity 
of 21825  U/mL and the anti-thrombin activity of 1200 U/
mL were obtained [130].

Clinical trials based on staphylokinase

In a the clinical trial in patients with coronary artery dis-
ease, Vander schueren et al. (1996) showed that the plasma 
half-life of staphylokinase was 6.3 min and double bolus 
administration was considered safe compared to single bolus 
administration [161]. Moreover, in other clinical trials con-
ducted by Armstrong et al. (2000 and 2003), (Type 1 and 2 
CAPTORS), the therapeutic potential of staphylokinase and 
its derivatives was studied and confirmed [162, 163]. How-
ever, Collen et al. reported the re-blocking of blood in ves-
sels in 38% of patients treated with staphylokinase [164]. In 
order to treat MI, two new variants of staphylokinase (THR-
100 and THR-174) are also suggested by ThromboGenics 
NV (Table 3). For this purpose, clinical trials (phase III) 
are conducted in India, the Middle East, Africa, and other 
countries [6].

Conclusions and perspectives

Thrombolytic therapy using current plasminogen activa-
tors is associated with complications that include: bleed-
ing, fibrin specificity, and vessel re-blockage caused by the 
platelet-rich secondary clots. Therefore, the ongoing throm-
bolytic research has now focused on third-generation throm-
bolytic molecules with fewer side effects. Staphylokinase 

could be a promising thrombolytic agent with properties of 
cost-effective production and the least side effects due to 
highly fibrin specificity and resistance to effect of plasmi-
nogen activator inhibitor type I (PAI-1) released by active 
platelets. As well as for improved efficacy and safety profile, 
the effectiveness of therapeutic intervention of genetically 
engineered multi-functional staphylokinase is convincingly 
demonstrated. However, a drawback related to staphyloki-
nase administration is the development of neutralizing anti-
bodies against staphylokinase from the third week on in all 
patients. The plasma clearance and the immunogenicity of 
staphylokinase could be decreased by amino acid substitu-
tions in addition to polyethylene glycol- derivatization of 
cysteine substitution variants. More dose-finding studies fol-
lowed with randomized control trials will require to confirm 
the contribution of each modification to the overall effects.
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