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Abstract

Among different types of dyslipidemia, familial combined hyperlipidemia

(FCHL) is the most common genetic disorder, which is characterized by at

least two different forms of lipid abnormalities: hypercholesterolemia and

hypertriglyceridemia. FCHL is an important cause of cardiovascular diseases.

FCHL is a heterogeneous condition linked with some metabolic defects that

are closely associated with FCHL. These metabolic features include dysfunc-

tional adipose tissue, delayed clearance of triglyceride-rich lipoproteins,

overproduction of very low-density lipoprotein and hepatic lipids, and defect

in the clearance of low-density lipoprotein particles. There are also some

genes associated with FCHL such as those affecting the metabolism and

clearance of plasma lipoprotein particles. Due to the high prevalence of FCHL

especially in cardiovascular patients, targeted treatment is ideal but this

necessitates identification of the genetic background of patients. This review

describes the metabolic pathways and associated genes that are implicated

in FCHL pathogenesis. We also review existing and novel treatment options

for FCHL. © 2019 IUBMB Life, 000(000):1–9, 2019
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INTRODUCTION
Familial combined hyperlipidemia (FCHL) is the most common
inherited form of dyslipidemia (1), which is estimated to affect
about one person per 100 (2). The genetic aspects of FCHL have
not been fully understood (3). Some metabolic defects accom-
pany FCHL such as malfunctioning of adipose tissue, impaired
metabolism of lipoprotein particles, reduced clearance of
apolipoprotein B100 (apoB), hepatic fat accumulation, over-
production of very low density lipoprotein (VLDL) in the liver
and insulin resistance (IR) (2). This polygenic lipid metabolism
disorder is characterized by different phenotypes such as high
cholesterol or triglyceride (TG) levels or combination of both
hypercholesterolemia and hypertriglyceridemia, increased apoB
levels in plasma, preponderance of atherogenic small dense low-
density lipoprotein (LDL) particles, and decreased concentration
of high-density lipoprotein cholesterol (HDL-C) within at least
two members of one family to be classified as FCHL; however,
lipid phenotypes commonly change over time (4). The exact
molecular defect that occurs in FCHL is still unclear. FCHL
appears to be associated with metabolic syndrome and a number
of cardiometabolic abnormalities such as IR, type 2 diabetes,
obesity, and hypertension (1, 5). It has been reported that meta-
bolic syndrome is an independent marker of cardiovascular dis-
ease (CVD) risk in those who have FCHL. Likewise, IR is another
feature of FCHL that is associated with lipid phenotypes, indicat-
ing that impaired in insulin sensitivity can result in lipid metabo-
lism abnormalities (6). Therefore, patients with FCHL are at a
high risk of premature atherosclerotic coronary artery disease
(CAD) and myocardial infarction (4, 6–8). The prevalence of CAD
in patients with FCHL younger than 60 years has been estimated
to be about 15% (4, 9, 10). With respect to male gender as a CAD
risk factor, CAD prevalence is almost five-fold higher in FCHL
men compared to older, predominantly postmenopausal FCHL
women (11). Since there is a lack of robust biomarker for definite
diagnosis of FCHL, many FCHL patients remain undiagnosed
despite being at a high CVD risk (12). In this review, we tried to
comprehensively search the extant literature to present an
updated picture of the disorder.

METABOLIC AND MOLECULAR
PATHWAYS RELATED TO FCHL
Previous studies have identified some molecular pathways that
are involved in FCHL. These pathways are described in the fol-
lowing sections (Fig. 1) (3, 13, 14).

DYSFUNCTIONAL ADIPOSE TISSUE
The evidence for dysfunctional adipose tissue in FCHL subjects
is abundant (Fig. 2) (14, 15). Arner et al. demonstrated that the
turnover of TG is reduced in the adipose tissue of patients with
FCHL (14). There is a list of genes with suggested roles in adi-
pose tissue dysfunction (Fig. 1). Lipolysis involves hydrolysis of

TGs into glycerol and free fatty acids and occurs in adipose tis-
sue (16). Hormone-sensitive lipase (HSL) is encoded by the LIPE
gene and has a key role in the lipolysis. Hence, it is a candidate
gene in FCHL pathogenesis (17, 18). PNPLA2, which encodes
patatin-like phospholipase domain-containing protein 2, is
another gene with a role in the lipolysis of TGs and is impli-
cated in adipose tissue dysfunction (19, 20). One of the main
genes that has been shown to have some important roles in
FCHL pathogenesis is USF1 (21, 22). USF1 has several important
target genes with key roles in lipid and glucose metabolism.
Gene variants in USF1 are associated with catecholamine-
induced lipolysis that are mediated by phosphorylation of HSL
and PNPLA2 genes. USF1 regulates the expression of many genes
involved in lipid metabolism and lipolysis (23, 24). In a study by
Laurila and colleagues in 2016, inactivation of USF1 in mice led
to protection against diet-induced dyslipidemia, hepatic steatosis,
IR, obesity, and atherosclerosis. Increased HDL-C and decreased
TGs were accompanied by increased energy expenditure due to
the activation of brown adipose tissue (BAT) (25). It was also
observed that USF1 inactivation could enhance plasma TG
clearance. In mice lacking USF1 or with silenced USF1, a direct
effect of USF1 on BAT activation was confirmed following an
amplified adrenergic response in brown adipocytes and aug-
mented norepinephrine-induced thermogenesis after USF1 silenc-
ing (25). A variant in G-protein-coupled receptor 77 (GPR77)
genes is associated with TG storage in adipocytes. Individuals with
this variant have decreased TG storage in adipocytes and high
levels of plasma lipids, indicating that some forms of FCHL are
monogenic (26).

LepR is encoded by the leptin receptor gene (LEPR) and is
usually produced by the adipose tissue. This protein is involved
in the regulation of energy metabolism and appetite. It was
reported that Gln223Arg polymorphism in the LEPR gene is
associated with increased risk of FCHL (27).

Peroxisome proliferator-activated receptor γ gene (PPARG),
which encodes a nuclear receptor and transcription factor, regu-
lates adipocyte differentiation and glucose homeostasis. PPARG
is another gene with a probable role in the dysfunction of adi-
pose tissue. (28).

DELAYED CLEARANCE OF TG-RICH
LIPOPROTEINS
An overview of TG-rich lipoprotein (TRL) metabolism is illus-
trated in Figs. 1 and 2. The causes of delayed clearance of TRLs
are complex (29, 30). Previous studies have demonstrated that
TRLs and their remnants can lead to the progression of athero-
sclerosis and CVD both directly and indirectly (31, 32). In the
circulation, lipoprotein lipase, which is encoded by the LPL
gene, hydrolyzes TG molecules. These TG molecules are carried
in VLDL particles. Some TG molecules in VLDL particles that
are less TG-rich are hydrolyzed by hepatic triacylglycerol
lipase encoded by the LIPC gene (3, 31). Patients with FCHL
have a delayed clearance of chylomicron remnants and VLDL
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particles (33). Using candidate gene approach, linkage data,
and genome-wide association studies (GWAS), several genes
with a possible role in the clearance pathways of TRLs have
been identified (34–36). These include the LPL gene on 8p22
chromosome, LIPC gene on 15q21-23 chromosome, apoC-II
and apoE on 19q13, and apoC-III and APOA1/C3/A4/A5 gene
cluster on 11q23–24 chromosome. The apolipoprotein CIII
impedes TG hydrolysis and TG remnant clearance, and may
exert pro-atherogenic activities. This gene has also been linked
to IR and type 2 diabetes mellitus, both of which being frequent
in FCHL. Other genes affecting TRL clearance include the
GALNT2 gene on 1q41-42 chromosome, LCAT gene on 16q22
chromosome, RXRG gene on 1q22-23 chromosome, USF1 gene
on 1q22-23 chromosome, and CETP gene on 16q21 chromo-
some (3, 37–41) (Fig. 2).

OVERPRODUCTION OF VLDL AND
HEPATIC FATS
There are numerous studies showing overproduction of apoB in
FCHL patients (Fig. 2) (42, 43). Increased free fatty acid flux to
the liver, hepatic de novo lipogenesis, and beta-oxidation
defects cause hepatic fat accumulation. Previous studies in dia-
betic patients have demonstrated that VLDL production is

increased by a high amount of hepatic fat and IR (44–46). Sev-
eral genes and variants in these genes that are involved in this
pathway can play a role in FCHL pathogenesis. GCKR inhibits
glucokinase in the liver and pancreatic islet cells, and some
variants in this locus have been associated with de novo lipo-
genesis, β oxidation, and plasma TG levels (47, 48). ApoE gene,
a ligand for LDL receptor and apoE, may lead to VLDL over-
production (49). OSBPL10 gene that is an intracellular receptor
for lipids is involved in the suppression of hepatic lipogenesis
and VLDL production. Mutations in this gene can lead to a
defect in the mentioned processes (50). Another gene, which
looks very important, is the upstream transcription factor or
USF1 gene that regulates transcription of several genes includ-
ing the genes related to lipid and glucose metabolism (51, 52).

DEFECT IN THE CLEARANCE OF LDL
PARTICLES
LDLs are complexes of apoprotein B-100 and lipids including
cholesterol esters, free cholesterol, triacylglycerol, and phos-
pholipids (53). LDL receptor binds to LDL and clears LDL from
the blood (54). Genetic defects in LDLR lead to elevated circulat-
ing levels of LDL as the major cholesterol-carrying lipoprotein
of plasma. Impairment of LDL transportation into cells by

FIG 1 Metabolic pathways and related genes involved in FCHL.
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endocytosis may leads to FCHL (55, 56). ATF6 gene on 1q22-23,
a sensor of ER stress response, is another gene with a suggested
role in the clearance of LDL in FCHL subjects. Proprotein con-
vertase subtilisin/kexin type 9 (PCSK9) gene is involved in choles-
terol homeostasis and differentiation of cortical neurons related
to the FCHL phenotype (57, 58). There is also an interaction
between sterol regulatory element binding protein 2, LDLR
expression, cholesterol synthesis, and PCSK9 expression in the
hepatocytes (Fig. 2) (13, 59–61).

Whole exome sequencing has determined a new gene in a
large FCHL pedigree. This gene, SLC25A40, is a casual factor for
hypertriglyceridemia. It represents a new metabolic pathway
that is very important as a potential therapeutic target (62, 63)
(Fig. 2). In addition, GWAS and linkage studies have determined
several genes that can contribute to the pathogenesis of the

FCHL (3). These genes are listed in Table 1 and require addi-
tional studies to clarify their exact role.

CONVENTIONAL AND NOVEL
TREATMENTS
Different treatments have been suggested for FCHL from
decades ago. The need for FCHL treatment is mostly because of
its well-known complications. Recently, Skoumas et al. com-
pleted a long follow-up study on both FCHL and heterozygous
familial hypercholesterolemia (HeFH) patients treated with sta-
tins. It was reported that statins will not increase the risk of
developing diabetes mellitus in aging FCHL patients. According
to their results, statin therapy will prevent cardiovascular

FIG 2 Pathogenic mechanisms of familial combined hyperlipidemia including dysfunctional adipose tissue, delayed clearance of

TG-rich lipoproteins, overproduction of VLDL and hepatic fats, defect in clearance of LDL particles. Adipose tissue dysfunction

increases the amount of free fatty acids in the liver. Liver FFAs and FFAs synthesized by de novo pathway from glucose in liver

are secreted into the bloodstream as VLDL accompanied by apolipoproteins (Apo). In the blood VLDL, IDL (intermediate density

lipoprotein) and then LDL are formed. LDL particles are cleared from plasma by the LDL receptor (LDLR). Dysfunction in any of

these steps can cause FCHL. Abbreviations: FFA, free fatty acid; TG, triglycerides; apo, apolipoprotein; LDL, low density

lipoprotein.

4 MOLECULAR AND THERAPEUTIC MECHANISMS OF FCHL

IUBMB LIFE



events in patients with familial hyperlipidemia (73). According
to the latest ESC/EAS guidelines for the management of
dyslipidemias, elevated LDL-C levels, which are associated with
elevated TG levels, will bear a greater risk for developing CVD.
Therefore, statins will be more beneficial in those with higher
TG levels. Patients with atherogenic profile including metabolic
syndrome and diabetes mellitus can benefit from statin therapy
alone or in combination with ezetimibe. Besides their putative
cholesterol-lowering activity, statins possess numerous lipid-
independent pleiotropic effects (74–79). Patients who suffer
from chronic kidney disease should receive statins with caution
especially if they have glomerular filtration rate less than
30 mL/min (80). For both FCHL and non-FCHL patients, reduc-
tion of TG will result in postprandial lipidemia improvement.
Reducing plasma VLDL levels can enhance chylomicron catabo-
lism and, therefore, facilitate postprandial lipoprotein clearance
(81). Asztalos et al. conducted a study on the effective dose of
statins in dyslipidemic patients. High doses of both atorvastatin
and rosuvastatin were effective in altering HDL subpopulation
phenotype though the effect of rosuvastatin was more favorable
(82). Karlson et al. also reported that each dose of rosuvastatin
is 3–3.5 times higher than equal doses of atorvastatin (83).
Monotherapy or combination therapy with statins and fibrates
are two cornerstones of therapeutic strategies in FCHL patients.
However, controversy surrounds the superiority of the drug of
choice for FCHL treatment. A common drug from statin family
is atorvastatin, which is known to inhibit VLDL secretion and
reduce fasting plasma TGs (81, 84). Even healthy subjects can
benefit from improvement in postprandial lipidemia after
treating with atorvastatin (85). Cabezas et al. demonstrated
that atorvastatin is more efficacious in reducing the cholesterol

rather than TG content of TRLs. Other researchers have pro-
vided different results in patients with dyslipidemias other than
FCHL and concluded that reduction of TRL could only be seen
in FCHL patients (30, 81). Moreover, Cabezas et al. demon-
strated that the most prominent effect of atorvastatin therapy
would be on hepatic TRLs but there is no major effect on intes-
tinal TRLs. The authors clarified the need for another lipid-
lowering agent to improve the clearance of postprandial TRLs
in FCHL patients treated with atorvastatin (81). Aside from sta-
tins, other important drugs in FCHL are fibrates that are used
either as monotherapy or in combination with statins from
decades ago. One of the first studies to evaluate the combina-
tion of different drugs in FCHL was conducted by Bredie et al.,
who used the combination of gemfibrozil (as a fibrate) and sim-
vastatin. Although none of these two drugs could completely
normalize the lipoprotein profile in monotherapy, a higher effi-
cacy can be achieved upon combination (86). Another study,
which indicated the effectiveness of combination therapy in
FCHL patients, was done by Zambon et al. In patients with ele-
vated apoB lipoproteins and reduced HDL-C, lovastatin could
lower LDL-C and gemfibrozil could affect HDL-C and VLDL. It
was reported that only a minority of patients benefited from
monotherapy while combination therapy was safe and superior
(87). Athyros et al. provided valuable evidence about the long-
term effects of combination treatment with statins and fibrates
in FCHL patients. Decreased LDL-C, total cholesterol, and apoB
as well as a significant increase in HDL-C were observed with
combined treatment. It was concluded that the combination
therapy is safe in refractory FCHL patients with or without CAD
(88). Despite various studies about the superiority of combina-
tion therapy, some researchers have recently tried to establish

TABLE 1 Reported FCHL-associated genes with uncertain roles

Gene product Gene Location References

Adducin 1 ADD1 4p16 (64)

ApoB mRNA editing enzyme, catalytic polypeptide 1 APOBEC1 12p13 (65)

WW domain-containing oxidoreductase WWOX 16p23-24 (64)

Unknown rs1424032 16p21 (65)

TNF receptor superfamily, member 1B TNFRSF1B 1p36 (66)

Transcription factor 7-like 2 (T-cell specific, HMG-box) TCF7L2 10q25 (67)

Ceramide synthase 4 CERS4 19p13 (68)

Paraoxonase 1 PON1 7q21 (69)

Protocadherin-related 15 PCDH15 10q21 (70)

Hepatocyte nuclear factor 4α HNF4A 20q13 (21, 71)

Fatty acid desaturase 3 FADS3 11q12-13 (22, 64)

Forkhead box C2 FOXC2 16q24 (22, 64)

Galanin prepropeptide GAL 11q13 (72)

Cellular retinoic acid-binding protein 2 CRABP2 1q21-23 (64)
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a first-line therapy rather than starting with combination ther-
apy for FCHL. Arca et al. provided evidence showing that ator-
vastatin (average dose of 20 mg/d) is superior to fenofibrate
(200 mg/d) in treating hyperlipidemia in FCHL patients (89).
There are also several novel therapies for the management of
hypertriglyceridemia that might find applications in future,
either alone or in combination with other agents, for the man-
agement of FCHL (90, 91).

While statins can lower plasma cholesterol and fibrates can
lower both plasma cholesterol and TGs, there is a need for
drugs, which can improve LDL phenotype as well (92). There-
fore, searching for novel therapies with efficacies beyond statins
and fibrates in FCHL is an ongoing attempt. Calabresi et al. eval-
uated the impact of administration of omega-3 fatty acids in
FCHL patients and reported beneficial effects of these fatty acids
on CHD risk. The administration of omega-3 fatty acids did not
change plasma cholesterol but reduced TGs and increased HDL2
subfractions as well as antioxidant enzyme paraoxonase (93).
Long-chain n-3 fatty acids’ effects in FCHL patients are not yet
understood. Docosahexaenoic and eicosapentaenoic acids (DHA
and EPA), which are present in fish oil can reduce TGs in hyper-
lipidemic patients. Omacor, which consists of esters of EPA and
DHA, has been tested in FCHL patients in Europe. Calabresi
et al. provided their patients with four Omacor capsules per day
for a period of 8 weeks in a randomized double-blind study. Sig-
nificant reductions in plasma TGs and VLDL-cholesterol were
achieved but the total cholesterol did not change. After 8 weeks,
plasma LDL particles in the Omacor group were enriched in cho-
lesterol but the abnormal size of LDL remained unchanged. The
authors concluded that the LDL size is mostly controlled by
genetic factors in an independent manner from plasma lipoprotein
levels (94). Nutraceuticals and phytochemicals are another class of
agents that have emerged as lipid-modifying agents (95, 96).
Gentile et al. evaluated the effects of Armolipid Plus (combina-
tion of red yeast rice, policosanols, astaxanthin, coenzyme Q,
folic acid, and berberine) on serum LDL-C levels of FCHL patients.
This nutraceutical combination could reduce LDL score (propor-
tion of small dense LDL particles [subfractions 3–7] to the whole
LDL area [subfractions 1–7]) and increased LDL particle size in
FCHL patients (97). It is noteworthy to mention that routine use
of fish oil or fibrates is better to be reserved for selective patients
and those whose TG levels remain high and/or their HDL-C level
remains very low despite receiving appropriate statin treatment
(80). The same as other diseases, single nucleotide polymor-
phisms (SNPs) play an important role in patients’ response to
drug therapy in FCHL. Microsomal TG transfer protein (MTP)-
493G/T polymorphism affects postprandial apo B48 and apo
B100 contents of TRLs in FCHL patients. MTP has a major role
in the secretion and intracellular lipidation of apoB in both liver
and intestine. Treating patients with T allele with atorvastatin
will result in significantly greater postprandial and fasting TG
reduction. Klop et al. reported that atorvastatin in T allele car-
riers of the mentioned SNP can decrease postprandial TG in
FCHL patients (98). FCHL patients have also low concentration
of vitamin D, which is directly related to their atherogenic

dyslipidemia. This deficiency is resolved by dyslipidemia treatment
though the mechanism is as yet unknown (99). Miñambres
et al. reported that FCHL patients will have lower 25(OH) D,
higher TG, and lower HDL-C and LDL-C concentrations. The
main difference of this study with others is consideration of dif-
ferent lipid-lowering regimens. Their patients were treated
with monotherapy or combination therapy with statins and
fibrates. According to the results, statin therapy was more
effective in increasing 25(OH)D concentration. Changes in lipid
parameters were not correlated with vitamin D concentration
alterations (99). MTP inhibitors are another therapeutic option.
Lomitapide is an MTP inhibitor, which prevents chylomicron
synthesis and its efficacy in lowering VLDL and LDL in familial
hypercholesterolemia has been shown (100, 101). Along with
their gastrointestinal adverse effects, these drugs are still not
evaluated in other hyperlipidemias such as FCHL. Mipomersen
as an antisense oligonucleotide inhibitor of apoB synthesis is
another therapeutic option. This injectable drug can effectively
reduce LDL and lipoprotein(a) in patients with HeFH (102).

FUTURE DIRECTIONS FOR
APPROPRIATE TREATMENT
Treatment of FCHL has been evolving since its discovery. As
mentioned earlier, treatment was started from monotherapy
with different lipid-lowering agents and continued toward dif-
ferent combination therapies. Several pharmacological and
nutraceutical approaches have been suggested and used suc-
cessfully in treating FCHL patients. Lupattelli et al. showed that
primary hyperlipidemias respond differently to statins (59).
Recently, PCSK9 has become an area of interest for those who
need more aggressive cholesterol-lowering therapies (103).
PCSK9 plays an important role in regulating cholesterol hemo-
stasis (104). Abifadel et al. proposed that PCSK9 variants might
be responsible for FCHL phenotype and hypothesized that these
patients can also benefit from targeting PCSK9 (105). Various
strategies have been put forward for PCSK9 inhibition (106, 107).
PCSK9 antagonist therapy in combination with statins may
become a superior therapy for FCHL patients though further
research is warranted (Fig. 1). Moreover, given the recent
developments in personalized medicine, it seems that treatment
of FCHL patients may also become more dynamic in different
populations. There is still a long way toward complete under-
standing of the role of different SNPs responsible for individual
responses to different therapies in different populations suffer-
ing from FCHL.

CONCLUSIONS
FCHL has a polygenic background, and until now, many genes
have been identified to be related to this type of hyperlipidemia.
Considering that FCHL is the most common type of genetic
hyperlipidemia and is one of the main causes of CVD, treatment
of this disease is very important. Currently, combination therapy
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with statins and fibrates along with dietary and lifestyle control
are the basis of disease management but newer therapies are
in the pipeline and expected to improve disease management.
For example, combination of statins and PCSK9 antagonizing
drugs is an appropriate therapy to reduce LDL-C in FCHL patients
(13, 108). With this view, it seems necessary to perform more
studies in future to find more genes related to FCHL pathogenesis
and associated pathways. This will allow more rational, target
based, and individualized therapies to be used in FCHL patients.
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