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Abstract 37 

Background: Globally, about 1 billion people have inadequate levels of serum vitamin D and it is 38 

prevalent in all ethnicities and age groups. Few foods naturally contain sufficient vitamin D; 39 

therefore, most people get their requirements through supplementation. Hence vitamin D status is 40 

affected by genetic and environmental determinants including season of measurement, diet habitual, 41 

health status, body mass index and concurrent medication. Further studies are necessary to 42 

understand how genetic variation influences vitamin D metabolism. We aimed to explore the 43 

association between a potential vitamin D-related polymorphism (the rs10766197 polymorphism in 44 

the CYP2R1 gene) with the response to supplementation of vitamin D in 253 healthy Iranian girls. 45 

Material and method: A total of 253 healthy subjects received 50000 IU of vitamin D3 weekly for 46 

9 weeks. Serum 25(OH)D concentrations and metabolic profiles were measured at baseline and after 47 

9 weeks of supplementation. The genotypes of the CYP2R1 variant (rs10766197) were identified 48 

using TaqMan genotyping assays.  49 

Results: Serum 25(OH)D during the supplementation, increased in all individuals. Subjects with a 50 

AA major genotype at this locus had higher vitamin D concentrations after intervention (Changes 51 

(%) 448.4%±425% in AA  vs 382.7%±301% in GG). This genetic variant modulated the response to 52 

supplementation (p <0.001 and p-value SNP=0.05). Regression analysis showed that the probability 53 

of affecting serum 25(OH)D, in individuals who had homozygous major allele GG was two-fold 54 

higher than carriers of the uncommon allele A (OR=2.1 (1-4.2); p = 0.03). Interestingly, the Hs-CRP 55 

was reduced in AA carries while was elevated in individuals with GG and AG genotypes, after high-56 

dose vitamin D supplementation. 57 

Conclusion: Changes in serum vitamin D and metabolic profile following high dose 58 

supplementation with vitamin D were associated with CYP2R1 polymorphism. Although carriers of 59 

the common G allele showed a greater response in the serum vitamin D. 60 

Key words: 25(OH)D, Supplementation, CYP1R2, rs10766197 61 

 62 

 63 
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Introduction 65 

Diet and other environmental factors such as the intake of vitamin D supplements and exposure to 66 

sunlight are known to influence serum vitamin D concentrations[1]. The assessment of serum 25-67 

hydroxyvitamin D (25(OH)D) is the best biomarker of vitamin D status; however, the optimal serum 68 

concentration is unclear [2, 3]. A study in in the United States, has suggested that a serum 25(OH)D 69 

concentration of 50 nmol/L is sufficient for normal bone health in most individuals [4] whilst other 70 

studies have suggested that 60 nmol/L is necessary for reduction in the risks of falling and fractures 71 

risk [5, 6]. Vitamin D has functions other than bone health.  It is involved in the regulation of more 72 

than 2000 genes. Vitamin D deficiency may be associated with several non-skeletal diseases, 73 

including cancer[7], obesity [8], asthma [9], diabetes [10], cardiovascular diseases (CVD)[11] and 74 

metabolic syndrome (MS) [12] and has been reported as a major public health concern, even in 75 

regions with high levels of sunlight [13], for example it is common in the Middle East, India, Africa, 76 

Australia and South America [14-16].   77 

In line with this, there is increasing evidence for a high prevalence of vitamin D deficiency in Iran; 78 

with reports of deficiency in >80% of the adolescence in Tehran and Arak [17, 18], about 60% of 79 

school-age girls in Yazd [19]  and  >70% in newborn infants in Zanjan [20]. Few foods naturally 80 

contain enough vitamin D , the most natural way to get vitamin D is cutaneous production when skin 81 

is exposed to the sunlight [3]. Public concern about the high prevalence of vitamin D deficiency has 82 

caused increasing demand for supplementation and testing. Since individual responses to 83 

supplementation is variable, a more tailored approach to supplementation may be required. The 84 

variation in serum 25(OH)D level response after supplementation has been attributed to body mass 85 

[21], baseline serum 25(OH)D level [22], supplement dose [23], and the season [22]; however, there 86 

is also convincing evidence that vitamin D status is affected by genotype[24]. Several studies have 87 
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reported polymorphisms in candidate genes associated with serum vitamin D that include CYP24A1 88 

and CYP2R1 [25, 26]. Each cytochrome P450 gene is known with CYP, implied that is part of the 89 

cytochrome P450 gene family. The common SNP, rs10766197, located in the promoter region of 90 

CYP2R1 gene, were reliable predictor of serum 25(OH)D levels[27]. 91 

The current study was carried out to examine whether treatment with high dose vitamin D 92 

supplementation is influenced by a variant in the CYP2R1 gene, using data obtained from a 93 

randomized controlled trial of vitamin D supplementation in healthy Iranian school-age girls of 12-94 

18 years old; a group in which vitamin D deficiency is common. 95 

Material and method 96 

Study population 97 

The 253 adolescent girls were recruited between January and April 2015 in Mashhad city, using a 98 

randomized cluster sampling method. Informed consent was collected from all participants using 99 

protocols approved by the Ethics Committee of the Mashhad University of Medical Sciences.  100 

Participants with any chronic diseases history, or who were taking any kinds of dietary supplements 101 

and anti-depressant or psychotropic drugs were excluded from study.  102 

Individuals with history of infectious disease, diabetes mellitus, family history of stroke, and 103 

myocardial infarction were excluded from study. Subjects received 50,000 IU vitamin D/week for 9 104 

weeks. Serum 25(OH)D and metabolic profiles were measured at baseline and after 9 weeks.  105 

Anthropometric and biochemical measurements 106 

Anthropometric parameters (e.g., height, body weight, waist and hip circumference) were measured. 107 

BMI levels among teens expressed relative to other children of the same sex and age. Percentiles 108 
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were calculated using CDC growth charts (US Centers for Disease Control and Prevention (CDC) 109 

growth reference), which were based on national survey data collected from 1963-65 to 1988-94 110 

[28]. Biochemical factors including serum serum calcium (Ca),and phosphate (P), , fasting blood 111 

glucose (FBG), creatinie, blood urea nitrogen (BUN)  and lipid profile; total cholesterol (TC), 112 

triglyceride (TG), and high-density lipoprotein cholesterol (HDL-C), measured by using commercial 113 

kits (Pars Azmun, Karaj, Iran) and the BT-3000 auto-analyzer (Biotechnica, Rome, Italy). Low-114 

density lipoprotein cholesterol (LDL-C) was estimated using Friedewald formula if serum TGs 115 

concentrations < 4.52 mmol/L [29-31]. High sensitivity C-reactive protein (Hs-CRP) was quantified 116 

using an immunoturbidimetry method, with limit of detection (LoD) 0.06 mg/L (Biosystems, Spain). 117 

Cut of value for Hs-CRP was < 1.90 mg/L in 5-18 years woman according to 118 

the manufacturer's instructions. 119 

An electrochemiluminescence method (ECL, Roche, Basel, Switzerland) was performed to measure 120 

serum 25-OH vitamin D. The LoD for the 25-OH vitamin D assay was 10 nmol/L for the ECL 121 

(Roche) and intra- and inter-assay variation were 5.7% and 9.9%, respectively.  122 

DNA extraction and genotyping 123 

Genomic DNA was extracted from blood samples using QIAamp® DNA Mini-Kit (Qiagen, San 124 

Diego, CA) according to the manufacturer's instructions. The purity and concentration of DNA 125 

samples were determined using the NanoDrop®-1000-Detector (NanoDrop-Technologies, 126 

Wilmington, USA). Genotype analysis of CYP2R1-rs10766197 polymorphism was carried out using 127 

Taq-man®-probes-based assay; PCR reactions were performed in 12.5 ml total volume, using 20 ng 128 

of DNA in TaqMan®n Universal MasterMix with specific primers and probes (Applied Biosystems 129 
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Foster City, CA). To assess the allelic content. The ABIPRISM-7500 instrument equipped with the 130 

SDS version-2.0 software was used.  131 

Statistics analysis 132 

Data was analyzed using SPSS version 20, IBM (SPSS Inc., IL, USA). Variables are reported as 133 

mean ± standard deviation (SD). Continuous variables were analyzed for normality using the 134 

Kolmogorov–Smirnov test. Analysis of variance (ANOVA) was performed to compare changes in 135 

biomarkers after intervention in different genotype groups. Post hoc analysis was done using 136 

Tukey’s test. A Chi square test with continuity correction was used to determine whether genotype 137 

frequencies followed the Hardy–Weinberg Equilibrium. Repeated measures analysis of covariance 138 

(ANCOVA) was performed to investigate the effect of the genotypes. Logistic regression was 139 

performed to study the probability of change in serum 25(OH) D in the genetic dominant model. 140 

Significance was set at p < 0.05. 141 

Results 142 

Influences of supplementation on circulation 25(OH)D in CYP2R1 variant  143 

In the total population of 253 healthy school-age Iranian girls, 88.1% suffered from vitamin D 144 

deficiency at baseline and only 4% of the total had a desirable vitamin D level. However, after 145 

intervention, 59.7% of the subjects were at a desirable concentration of 25(OH)D. About 20.2% of 146 

the subjects remained vitamin D deficient (Fig. 1). To examine the influence of CYP2R1 variant on 147 

the circulation levels of vitamin D after intervention, subjects were categorized across rs10766197 148 

genotype. The results revealed no significant trend in distribution of vitamin D status (desirable, 149 

sufficiency and deficiency) among different genotypes at baseline (P-trend = 0.4). However, 150 

supplementation for 9 weeks led to significant trend (P-trend =0.05) (Table 1), with a reduction in 151 

the percent of subjects with a low serum vitamin D. The serum 25 (OH) D responses was dependent 152 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

on the SNP in CYP1 (Fig. 2). During the supplementation, serum (OH) D increased in all groups, 153 

but carriers who had the common G allele, had higher vitamin D concentrations after 9 weeks of 154 

intervention. The SNP rs10766197 modulated response to vitamin D supplementation (p-value of 155 

intervention effect <0.001 and p-value SNP=0.05) (Fig. 2). Regression analysis also indicated that 156 

the probability of altering serum 25(OH)D, in individuals who had homozygous major allele GG 157 

was two-fold higher than carriers of the uncommon A allele (OR=2.1 (1-4.2); p value=0.03). The 158 

regression model also was significant using a dominant model (OR=1.8 (1-3.1); p value=0.05) 159 

(Table 3). Data was adjusted for potential confounders such as age and BMI percentile.  160 

Influence of supplementation on metabolic profile in CYP2R1 variant 161 

Further analysis showed that fasting blood glucose and triglyceride concentration reduced in all 162 

subjects but carriers of a GG genotype showed a greater reduction in FBG and carriers of AA 163 

genotype showed a greater reduction in serum TG (Table 2). Interestingly, Hs-CRP was also reduced 164 

in AA carriers whilst the individuals with GG and AG genotypes, inflammation increased after 9 165 

week of vitamin D supplementation (Table 2). Change in levels of Ca, BUN, creatinine and P after 166 

supplementation was not statistically significant among different genetic models (Table 2). 167 

Discussion 168 

Influence of supplementation on circulation 25(OH)D in CYP2R1 variant 169 

In the present study, we explored the association of rs10766197 of the CYP2R1 vitamin D-related 170 

gene with serum 25(OH)D concentrations and found that this polymorphism was significantly 171 

associated with the serum 25(OH)D concentrations after 9 weeks of vitamin supplementation and it 172 

appeared that carriers of dominant G allele were better responder to vitamin D in respect to elevation 173 

serum vitamin D. Animal and human studies have shown that different cytochrome P450 enzymes 174 
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2(CYP) including CYP2R1, CYP2D25, CYP3A4CYP27A1 are vitamin D 3 25-hydroxylases and 175 

cause 25-hydroxylation of vitamin D 3 and related metabolites[25]. Unlike others 25-hydroxylases, 176 

CYP2R1 hydroxylates both vitamin D 2 and vitamin D 3 [32]. Therefore, genetic variations 177 

including rs10766197, in the promoter region of this gene, may influence 25(OH)D synthesis. Our 178 

data indicated although this genotypic variant was not associated with baseline 25(OH)D level, it 179 

influenced on the response to the supplementation. It is possible that the regulation of 25(OH)D 180 

synthesized by skin might be different from supplementation. In agreement with our study, Nissen et 181 

al. examined variants in some vitamin D-related genes in 201 healthy Danish population. They 182 

reported a significant association between serum 25(OH)D and rs10766197. Similarly, in a study by 183 

Engelman et al. in a female population, all individuals who had no risk alleles of rs4588 and 184 

rs2060793, consuming about 670 IU/d vitamin D, the circulation level of 25(OH)D concentrations 185 

were at sufficient level (> 50 nmol/L). For carriers with 1 and more risk alleles whose intakes were 186 

at least 670 IU/d vitamin D, only more than 50% of subjects had serum 25(OH)D > 50 nmol/L [26]. 187 

Thacher et.al in the cohort study on ricketic Nigerian children, reported that individuals with a 188 

defective CYP2R1 allele had a mild form of VDDR1B and produce less 25(OH)D after intervention 189 

with vitamin D2 or vitamin D3. While, subjects who are homozygous for CYP2R1 mutations showed 190 

a severe form of VDDR1B and had minimal rise in serum 25(OH)D after administration of vitamin 191 

D, and improvement would be only with high doses of vitamin D [25, 33]. In the study of Bu et al. 192 

they found that rs10741657 and rs10766197 were significantly associated with serum 25(OH)D 193 

concentrations in 496 healthy Caucasian people [34]. Based on similar results obtained from several 194 

studies on different population [26, 35, 36] it appeared that variants in the CYP2R1 gene predict 195 

serum 25(OH) D concentrations. 196 

Influence of supplementation on fasted lipid profile and Fasting blood glucose in CYP2R1 variant 197 
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We found that, an intake of 50000 IU/D vitamin D per week had beneficial effects not only on 198 

25(OH)D concentrations in all genotype groups but also on glycemic and lipid profile. However, 199 

these effects were greater in the subjects who had GG and AG genotypes at the rs10766197 locus. 200 

Noticeable that although carriers of the uncommon allele A, showed an increase in vitamin D 201 

concentration that was less than for other genotypes, the reduction in TG was more considerable. It 202 

was suggested that vitamin D has both direct and indirect effects on modifying the lipid profile.  203 

An underlying mechanism on improving lipid profile may be through regulatory action of vitamin D 204 

in the simulation of lipoprotein lipase [37] and reduced intestinal absorption and synthesis [38].   205 

Cross-sectional studies have reported a negative relationship between circulation levels of 25(OH) D 206 

and serum Triglyceride. However, the influence of 25(OH) D on TG concentrations in interventional 207 

studies after supplementation with vitamin D is inconsistent [39].  Pittas et al. illustrated that in the 208 

individuals with impaired fasting glucose, administration of vitamin D and calcium might ameliorate 209 

insulin resistance [40].  Jorde et al. in a cross sectional studies examined 8018 non-smoking 210 

individuals, found a significant positive relationship between serum 25(OH)D and serum HDL-C, 211 

TC, and LDL-C and also a significant inverse associations between serum 25(OH)D with both LDL-212 

C/HDL-C ratio and TG [41]. In an interventional study on 438 obese Norwegian, they found no 213 

statistical association between supplementation with vitamin D and lipid profile [42]. Similarly, 214 

Sieda et al. in a meta-analysis showed no significant improvement in glucose parameters[43]. These 215 

controversial illustrations might be partly attributed to the inherent limitations and heterogeneity of 216 

the studied cohorts. Some common factors may be influenced on both the high serum 25(OH)D 217 

levels and favorable lipid profile include exercise, diet habitual and genetic profile.  218 

Influence of supplementation on inflammation in CYP2R1 variant 219 
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Our data revealed that inflammation increased in the carriers of dominant allele G after intervention 220 

by vitamin D supplementation while individuals who had AA genotype showed significant reduction 221 

in serum Hs-CRP after supplementation. It appeared that clinical outcome in response to vitamin D 222 

supplementation was genetic-related. Emerging evidence has reported a relationship between 223 

vitamin D supplementation and serum levels of proinflammatory and inflammatory markers such as 224 

cytokines and CRP. Some studies have reported a positive association with circulation levels of 225 

25(OH)D and others showed an inverse association while some declared no relationship [44-47]. 226 

Vitamin D has been shown to suppress in vitro and in vivo the production of proinflammatory 227 

cytokines and modulate both the innate and adaptive immune systems [48, 49]. It is proposed that 228 

macrophages, dendritic cells and activated lymphocytes influence on vitamin D receptor, implying a 229 

crucial role of vitamin D in the immune system [14]. Furthermore, the enzyme 25-hydroxyvitamin is 230 

produced by the immune system [50]. On the other hand, the activated vitamin D down-regulates 231 

proinflammatory mediators, such as interleukin (IL)-6, IL-8 , tumor necrosis factor (TNF) α,  and 232 

monocyte chemoattractant protein (MCP)-1 [51, 52]. However, it is suggested that while 233 

supplementation with vitamin D elevate the 25(OH)D, the conversion of inactive 25(OH)D to active 234 

1,25(OH) D in the kidneys is not immediate, and may not be efficient.  Both the inactive and active 235 

form of vitamin D bind to the vitamin D receptor (VDR), only the 1,25-D allow VDR to perform its 236 

functions beneficially and the 25(OH)D inhibits the VDR functions.  Since VDR is the “gate-237 

keeper” of the innate immune system and modulate by thousand genes so increased levels of 25-D 238 

might show immunosuppressive effects [53].  239 

Generally, discrepancies in the different literature indicate the need for further studies both in 240 

healthy and disease population to find out more details about the potential association between 241 

serum levels of vitamin D and inflammation biomarkers. On the other hand, regulation of serum 242 
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vitamin D in human body is a complex process that varies with individual genetic profiles and their 243 

health status. Research in genetic epidemiology of vitamin D is in its infancy and further 244 

comprehensive studies would be needed to understand how genetic variations modulate clinical 245 

outcomes of vitamin D supplementation. 246 

 Conclusion 247 

We have found that although individuals with a GG genotype of CYP2R1 variant had a greater 248 

response to vitamin D supplements, the inflammation status was worsened. However, carriers of AA 249 

genotype showed less increase in 25(OH)D than others, but inflammation status only improved in 250 

this group. We conclude that personalized advice and recommendations tailored to individual’s 251 

genetics seems help to determine how different individuals with various genetic background respond 252 

to the supplementation. People may need different health recommendations based on their genetic 253 

profiles, in order to elevate their serum 25(OH)D concentrations thereby avoiding adverse health 254 

outcomes.  255 

 256 
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 394 

Figure 1. Comparison of the vitamin D status before and after 9 weeks of vitamin D 395 

supplementation. Deficiency: Serum 25(OH)D level<50nmol/L. Sufficiency:  50nmol/L<Serum 396 

25(OH)D level<75nmol/L. Desirable>75nmol/L[54]. 397 
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 414 

Table 1.  Vitamin D status before and after 9 week of vitamin D supplementation according to CYP2R1 

genotypes. 

Vitamin D status 

(N=253) 

GG (N=72 ) AG (N=119) AA (N=62 ) 

Baseline Follow-up Baseline Follow-up Baseline Follow-up 

Desirable 4 (5.6) 50 (69.4) 2 (1.7) 70 (58.8) 4 (6.5) 31 (50) 

Sufficiency 6 (8.3) 12 (16.7) 10 (8.4) 23 (19.3) 4 (6.5) 16 (25.8) 

deficiency 62 (86.1) 10 (13.9) 107 (89.9) 26 (21.8) 54 (87.1) 15 (24.2) 

Note: Σ2 test showed a Ptrendof 0.4 at baseline; Ptrend at 12-month follow-up is 0.05. Data is presented as 

frequencies (%). Deficiency: Serum 25(OH)D level < 50 nmol/l. Sufficiency: Serum 25(OH) D level between 50 

to 75 nmol/l. Desirable: Serum 25(OH)D level > 75 nmol/l. 
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 437 

Table 2.  Comparisons of the variables before and after 9 weeks of vitamin D supplementation in different genetic modes. 

  GG AG AA P value in different genetic models 

 Additive 
Recessi

ve 
Dominant 

BMI Percentile 

Baseline 62±56 58.4±28 55.7±26 

Ns Ns Ns Follow-up 56±30 54.6±29 49±27 

Change -17.6±19 -12.4±26.3 -15.9±22.9 

Blood pressure 

SBP (mm Hg) 

Baseline 101±11 100.7±13 99.6±12 

Ns Ns Ns Follow-up 99±13 98.5±13.6 100±12 

Change -1±15.5 -1.2±15 2.1±16 

DBP (mm Hg) Baseline 67±10 67.3±10 67.1±10.5 

Ns Ns Ns 
 

Follow-up 65±11 63±10 64.1±11 

Change -0.5±14 -4.1±12 -2±9.1 

Serum fasted lipids 

Total Cholesterol 

(mg/dL) 

Baseline 164.3±26 165±31 158±28 

Ns Ns Ns Follow-up 150.5±24.5 156±26.5 153±27 

Change -7.4±10.7 -4.6±14.1 -0.1±28 

TG(mg/dL) 

Baseline 87.7±41 79.5±29 83±33 

0.03 Ns 0.03 Follow-up 80.5±40 81±32 70.7±26 

Change -0.8±35.1 4.9±29.6 -7.3±27.1 

HDL(mg/dL) 

Baseline 46.4±8 48.9±9 46.1±8 

Ns Ns Ns Follow-up 44.2±8 46.3±10 44.8±7.5 

Change -3.2±14.1 -2.5±14.5 -1.7±14.3 

LDL(mg/dL) 

Baseline 100.7±20 101.1±27 99.4±21 

Ns Ns Ns Follow-up 89.1±20 92.4±22 93±22 

Change(%) -11.9±17 -9.1±19 -7.1±17.1 

Other blood parameters 

FBG 

Baseline 90±13 88.6±10 86.6±9 

Ns Ns 0.05 Follow-up 87±12 85±12 85.7±10.6 

Change -3±10.8 -4.1±11 -0.9±13.4 

WBC(10
9
/L) 

Baseline 6.3±1.8 6.06±1.6 6.1±1.5 

Ns Ns Ns Follow-up 6.1±1.6 6.1±1.4 5.5±1.3 

Change -1.8±24.6 0.1±27 -4.4±28 

Serum Hs-

CRP(mg/L) 

Baseline 1.3±1.6 1.1±1.1 1.8±1.7 

Ns 0.003 0.05 Follow-up 1.6±2 1.4±1.3 1.1±1.4 

Change 17.7±13 61.6±17.6 -26.8±8.4 
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25-OH vitamin 

D(nmol/L) 

Baseline 27.5±25 24±18 29±34 (AA vs. GG) 

0.03 

(AA vs. AG) 

0.04 

0.049 Ns 
Follow-up 99.3±42 86±40 84.4±46 

Change 447.3±414.6 423.6±380.4 433.0±426.9 

Ca(mg/dL) 

Baseline 9.6±0.5 9.4±0.5 9.4±0.7 

Ns Ns Ns Follow-up 9.7±0.5 9.7±0.5 9.7±0.5 

Change 0.1±0.6 0.3±0.57 0.3±0.8 

Phosphate(mg/dL) 

Baseline 4±0.5 3.9±0.4 3.9±0.5 

Ns Ns Ns Follow-up 4±0.4 4±0.4 4±0.4 

Change 0±0.4 0.1±0.4 0.1±0.4 

Creatinine(mg/dL) 

Baseline 10.6±3.8 6.6±11.5 5.6±11.8 

Ns Ns Ns Follow-up 0.7±0.09 0.7±0.1 0.7±0.1 

Change 8.7±12.9 10.3±15.2 8.0±13 

BUN(mg/dL) 

Baseline 12.3±3 12.5±3 12.6±3 

Ns Ns Ns Follow-up 13.8±4 13.6±3.2 14±3 

Change 16.3±34.1 15.5±35.3 14.4±30.6 

 Note: Change = ((Follow up – Baseline)/Baseline)/100; p values presented for the changes in different variables after vitamin 

D supplementation according to genotypes; Additive genetic model (GG genotype vs. AG genotype vs. AA genotype); 

Recessive genetic model (GG genotype vs. AG+AA genotypes); Dominant genetic model (GG+AG genotypes vs. AA genotype). 

BMI: body mass index; TC: total cholesterol; TG: triglycerides; HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density 

lipoprotein cholesterol; Hs-CRP: high-sensitivity Creative protein; FBG: fasting blood glucose; SBP: systolic blood pressure; 

DBP: diastolic blood pressure; BUN: Blood Urea nitrogen; Ca: Calcium; FBG: Fasting blood glucose.  
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 448 

Figure.2.Serum 25(OH)D stratified by a polymorphism in CYP2R1 gene. Values are means ±SD. Two-449 

way ANCOVA repeated measures adjusted for multiple comparisons by Bonferroni test for serum 450 

25(OH)D levels. Covariates used: age, BMI percentile and serum 25(OH)D at baseline. 451 
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Table 3. Association of CPY2R1 variant- rs10766197 with the changes in 

circulation levels of 25(OH)D after 9 weeks of supplementation (under 

different genetic models) 

A
d

d
it

iv
e

 m
o

d
e

l 

AA AG GG 

Reference  

(Risk group) 

 

OR (CI95%), p value OR (CI95%) 

1 1.6 (0.8-3.3), 0.1 2.1 (1-4.2), 0.03 

R
e

ce
ss

iv
e

 m
o

d
e

l AG/AG GG 

Reference 

(Risk group) 
OR (CI95%), p value 

1 1.5 (0.9-2.6), 0.1 

D
o

m
in

a
n

t 
m

o
d

e
l AA AG/GG 

Reference 

(Risk group) 
OR (CI95%), p value 

1 1.8 (1-3-.1), 0.05 

Data was adjusted for age, BMI percentile. 
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