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ABSTRACT 
 
Cronobacter spp. are opportunistic pathogenic bacteria that can cause different diseases through 
consumption of contaminated food. Cronobacter sakazakii is the most important species found in 
Powdered Infant Formula (PIF) and baby food. PIF is the most significant source of C. sakazakii 
which provides an appropriate environment for its growth and survival. Infant formula is heated 
during its production, although this amount of heating is not enough for sterilization and disinfection. 
C. sakazakii is considered a threat in all age groups. It may cause different illnesses such as 
meningitis, bacteraemia, sepsis and necrotizing enterocolitis in children. It may also cause infections 
in adults such as pneumonia septicemia, osteomyelitis, splenic abscesses, and wound infections. 
The mortality rate is high (40-80%) and the survivors suffer from severe neurological complications. 
Poor hygienic preparation of infant food at home or at hospitals has been reported as one of the 
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main reasons of C. sakazakii infection. The gold standard based on FDA-recommended methods 
(Food and Drug Administration) for the isolation and identification of C. sakazakii obtained from 
powdered infant formula, is both time consuming and labor intensive.Since the rapid detection and 
diagnosis of this bacterium is important, new molecular methods are being used today. These 
methods have meaningful and significant advantages as compared to traditional methods on 
account of speed, sensitivity, specificity and accuracy. The aim of this study is to investigate the 
characteristics of C. sakazakii and its molecular identification and virulence genes. 
 

 
Keywords: Powdered infant formula; foodborne disease; epidemiology; virulence genes; polymerase 

chain reaction; Cronobacter sakazakii. 
 
1. Cronobacter sakazakii  

CHARACTERISTIC 
 
1.1 Chemical Characteristics 
 
The molecular identification of Cronobacter has 
classified this bacterium into seven groups: 
C.universalis, C. condimenti, C. sakazakii,                   
C. malonaticus, C. dublinensis, C. muytjensii,                
C. turicensis, and among which, C. malonaticus, 
C. turicensis, and C. sakazakii are the most 
common species isolated from contaminated 
newborns while C. pulveris, C. zurichensis and 
C. helveticus are the reclassified kinds which 
have been identified lately [1]. C. sakazakii is a 
food-borne pathogen belonging to the family of 
Enterobacteriacea with characteristics such as 
being facultative anaerobe, gram-negative, 
motile with a peritrichous flagella and rapid 
growth on laboratory media [1]. Before 1980,               
E. sakazakii with yellow-pigmented cloacae 
belonged to Enterobacteriacea family [2]. This 
bacterium has a similar biochemical profile as E. 
cloacae, but unlike E. cloacae, it is always d-
sorbitol negative and extracellular 
deoxyribonuclease positive and which could 
produce yellow-pigmented colonies [3,4]. This 
organism could grow on agar plate with two 
forms of colonies: glossy or matte, which 
depends on bacterial strain and its growth 
environment. It can grow on MacConkey agar 
with "Blue-Green" colonies, because it can 
produce α-glucosidase enzyme [5]. This 
bacterium can also grow on Eosin Methylene 
Blue (EMB) and deoxycholate agar. It can be 
identified with a typical non-diffusible yellow 
pigment colonies on Tryptic Soy Agar (TSA) at 
25°C [3,5]. Voges-Proskauer test is positive for 
this bacterium, while citrate assimilation, B-
glucosidase (ONPG) and methyl red test 
reactions are negative [6]. The bacterium is 
indole positive, oxidase negative, catalase 
positive and citrate positive, MR-VP and nitrate 
reduction negative, and it is able to ferment 
glucose with the production of acid and gas, 

lactose rhamnose, xylose, trehalose, arabinose, 
cellubiose and melibiose. It can also de-
carboxylate arginine, hydrolyseesculin and 
liquefy gelatin, but it cannot ferment dulcimer and 
malonate [7]. 
 
C. sakazakii is able to produce a delayed 
extracellular DNAase reaction against toluidine 
blue agar at 36°C after 7 days. It is α-
glucosidase positive that can be recognized by 4-
nitrophenyl-a-d-glucopyranoside after 4 h at 36 
°C. Researchers have found two major 
differences between C. sakazakii and other 
Enterobacter species; one of them is α-
glucosidase activity which was shown in all                  
C. sakazakii strains, but it was not found in any 
of the Enterobacter strains; therefore the 
absence of phosphoamidase enzyme was 
unique in C. sakazakii  isolates [7]. 
 
The organism produces d-lactic acid and it is 
mucate negative. Most of the isolates produce 
esterase enzyme, this indicates another 
difference between C. sakazakii and E. cloacae 
[8] along with not fermentation of sorbitol. It can 
produce a novel hetero polysaccharide 
comprising 29-32% glucuronic acid, 23-30% d-
glucose, 19-24% d-galactose, 13-22% d-fucose 
and 0-8% d-mannose [2,3,6,9,10]. In 2002, the 
International Commission on Microbiological 
Specifications for Foods (ICMSF) has ranked                
C. sakazakii as " dangerous and life threatening 
with substantial chronic side effects "[3,11]. 
Afterwards, it has a similar ranking with some 
familiar food and water-borne pathogens such as 
Listeria monocytogenes, Clostridium botulinum 
types A and B and Cryptosporidium parvum [3]. 
 
2. FOODS AND ENVIRONMENTAL 

SOURCES OF C. sakazakii 
 
C. sakazakii is reported to be commonly isolated 
from different environments and food sources 
[35,36]. It has also been isolated from the 
surfaces of the equipments and food production 
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environments [37]. Reports showed that the cells 
of the bacterium in biofilms could grow on silicon 
or latex and polycarbonate, and to a lesser 
extent on stainless steel material [14] like 
aluminum and intestinal tube, because this cell 
form increase the resistance of bacteria to 
chemical agents. The death and destruction of 
the cells in biofilms are influenced by relative 
humidity [20]. The sources of the bacteria and 
the devices which transmit it to something new 
are not constantly clear. However, the pathogen 
has been found in different food resources, its 
cooperation with powdered infant formula (PIF) is 
of the greatest concern [1,38]. The important 
food and environmental sources are described in 
Table 1. 
 

2.1 Newborn Formula (Important Source) 
 
Due to being the main source of this pathogen, 
many researchers have focused on newborn 
formula [45]. Liquid feeds, dried milk powders 
and powered newborn formula are heated during 

their production, although this amount of heat is 
not enough for sterilization and disinfection [18]. 
From another point of view, the newborn's gut 
flora is not complete and the stomach acid 
secretion is also low; therefore, children could 
easily get infected. The growth of multiple 
pathogens is supported by PIF efficiently and it 
could be contaminated [64]. It was shown that 
PIF contains C. sakazakii and has been 
epidemiological connected to several clinical 
cases [27].  
 

It is also reported that the contamination 
prevalence of powdered milk can be                         
ranged from 6.6% in Brazil to 29% in China [65]. 
Although, the great majority of the cases 
worldwide are reported from five countries: USA, 
UK, France, Belgium and the Philippines [51], C. 
sakazakii is considered as food safety risk                      
which is harmful to human health, specifically                      
in minimally processed foods and also in                   
new foods processed by alternative technologies 
[11]. 

 
Table 1. Foods and environmental sources of C. sakazakii 

 
Meat 

Meat, sausage,  minced beef, fish, shrimp, pork (dry, raw, cured), 
poultry 

[20, 27, 39, 40, 42, 43, 44] 

Grain and seeds  
Biscuits, bread,  dry ingredients (almonds, coconut powder, pistachio, 
lentils),  pea soup powder, grains, flour or meal (corn, rice, soy, 
wheat), cereal (adult and newborn), almond, nuts and seeds, seed 
sprouts, sorghum seeds , ground rice ,  rice seeds ,   sesame seeds,  
semolina samples, lentils, Bean   

[3, 14, 42, 45, 46, 47, 48, 
49, 50] 

Food  
Soup, pasta, egg [14, 51, 52, 53] 

Beverages 
Khamir (fermented sorghum bread), fermented bread, sobia 
(fermented beverage), tempé (fermented soybean) 

[3, 45, 54] 

Vegetables and fruit  
Vegetables (mixed salad), Laver (red algae), herbs, Mexican fruit flies, 
tomato, courgettes, lettuce, potato, sponge mix 

[27, 39,  48, 51, 55, 56, 
57, 58] 

Environment  
Soil, milk powder factories,  milk stored in a milk bank,  chocolate 
factories,  households, hospitals,  doctor’s stethoscope, food 
preparation equipment:  spoons, blender 

[3, 27, 45, 48] 

Water  
central and local drinking water supplies [28] 

Milk 
UHT milk, newborn formula, powdered milk, cheese,  [3, 39, 45, 59] 

Animals  
gut of stable fly larvae,  rats, animal sources [45] 

Clinical sources  
cerebrospinal fluid (CSF), blood, bone marrow, sputum, urine, inflamed 
appendix, intestinal and respiratory tracts, eye, ear, wounds, feces 

[27, 42, 47, 60, 61, 62, 63] 
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3. RESISTANT CHARACTERISTICS OF        
C. sakazakii 

 

3.1 Resistance to the Environment 
 
C. sakazakii is sensitive to heat, it can tolerate 
high desiccation and osmotic stress and could 
also survive during milk powder processing [12, 
13]. Furthermore, the formation of biofilm of                
C. sakazakii assists the organism to survive in 
milk powder and on the surface of processing 
utilities [14,16], it also enables the organism to 
resist multiple stress conditions including water 
and nutrient shortages and biocides presence 
[17]. C. sakazakii can grow over an extended 
temperature range (21°C ) with the maximum 
temperature of 41-45°C and minimum 
temperature of 5.5- 8.0°C. Generation time of 
this bacterium is 40 min at 23°C, 4.18-5.52 h at 
10°C and 75 min at 25°C in rebuiltinfant milk 
powder (IFM) [18]. The fastest rate is almost 10 h 
in IFM at 10°C, therefore, it grow with slower 
rate, under cool conditions [19]. Skladal et al. 
(1993) have reported milk acidification and                 
C. sakazakii growth in UHT milk cartons 
inoculated with 10–15 C. sakazakii cells/500 ml 
and incubated at 30°C. The increase in milk 
acidity was due to d-lactate production. Studies 
on pasteurized milk stored at 30°C showed that 
the bacteria could survive due to the appropriate 
temperature for the growth of this bacterium and 
milk acidification because of D-lactate 
production. Beuchat et al. showed that the 
infected agent survived better in dried formula 
and cereal at low aw (0.25-0.30) than at high aw 
(0.69-0.82) and at 4°C compared to 30°C.                  
C. sakazakii grows in formulas and cereals 
reconstituted with milk or water at 12-30°C. They 
have also discovered that the composition of 
formulas or cereals does not noticeably affect 
this rate of development as well. C. sakazakii can 
grow on fresh cut apple, watermelon, lettuce, 
cantaloupe, carrot, cabbage, cucumber and 
tomato at 25°C and on some other products at 
12°C. The bacteria could live longer and better in 
PIF at aw 0.25-0.30 than in PIF at aw 0.43-0.50 at 
two different temperatures; 21°C and 30°C [20]. 
The minimum and maximum PH for the bacteria 
is 3.89 and 5-9 respectively [21]. Strains of                   
C. sakazakii cannot survive at very low pH (2.5) 
[5]. 
 
High hydrostatic pressure has been reported as 
a pasteurization treatment which does not 
involve heat progress. Under experimental 
circumstances, 7-log10 cycle reduction was 
obtained at 350-400 MPa for 10-15 minutes at 

ambient 25°C [22]. The lowest resistance and 
the highest growth of the bacteria in hydrostatic 
pressure occur at 30-37°C with a PH of 4.The 
highest resistance is also observed at low aw (aw 
= 0.98), because the coating of bacteria is    
more stable [11]. Strains of C. sakazakii could 
grow at 10% NaCl and 5% bile salt concentration 
[5]. 
 

3.2 Resistance to Antimicrobial 
 
The efficiency and productivity of disinfectants 
are usually employed in both clinical and food 
environments to promote clean surfaces and to 
avert Cronobacter spp. [23]. Both antibiotic 
sensitivity and bacterial resistance have been 
managed after a couple of deadly reported 
infections among the newborns [24-26] which are 
shown in Table 2. 
 

4. CHARACTERISTICS OF THE DISEASE 
 
C. sakazakii is an opportunistic and life-
threatening pathogen [66]. It has been known to 
be implicated in the development of bacterial 
infections in newborns since 1961 [67]. This 
pathogen has a 40-80% mortality rate among the 
infected newborns and seems to be specifically 
associated with strains of C. sakazakii sequence 
type-4 (ST4) [5,36,67]. It is considered an 
emerging opportunistic pathogen, responsible for 
cases of neonatal infections including necrotizing 
enterocolitis (NEC), meningitis, bacteraemia and 
septicemia [18]. NEC is characterized by 
inflammation and intestinal tissue damages and 
is one of the most common reasons of 
gastrointestinal disorders in neonates [1, 66], due 
to the use of contaminated newborn milk formula 
[18]. High rates of fatal outcome and neurological 
complications of neonatal Cronobacter infections 
such as diarrhea, urinary tract infections, splenic 
abscesses, osteomyelitis, pneumonia, wound 
infections, urinary tract infections and 
conjunctivitis [29,68,69] occur in neonates with a 
lower frequency [70]. Meningitis symptoms 
include ventriculitis, brain abscess, 
hydrocephalus and cyst formation as well as 
necrotizing enterocolitis characterized by 
intestinal necrosis and pneumatics intestinal; 
pulmonary, urinary and blood stream infections 
[5]. The survivors would probably suffer from 
severe neurological complications [66,67]. 
 
It may cause infections in all age groups [18] 
including newborns, children, and immuno- 
compromised adults and people with underlyin 
medical conditions [20]; although, premature
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Table 2. Antibiotic susceptibility of C. sakazakii in different studies 
 

Susceptibility  
1. Aminoglycosides [27] 
2. Antifolates [27] 
3. Ampicillin [27] 
4. Aminoglycosides [28] 
5. Ampicillin-gentamicin [27,29] 
6. Ampicillin-chloramphenicol [27, 29] 
7. Aztreonam [10] 
8. β-lactams [27] 
9. Carbenicillin [11] 
10. Cephalothin [11] 
11. Cephalosporins [29, 30] 
12. Chloramphenicol [27,29,31] 
13. Colistin [11] 
14. Cefoxitin [31] 
15. Ciprofloxacin [31] 
16. Cefotaxime [10] 
 

17. Cefoperazone [31] 
18. Ceftriaxone [31] 
19. Ceftazidime [10] 
20. Carbapenems [27, 29] 
21. Imipenem [10] 
22. Gatifloxacin [31] 
23. Gentamicin [11, 30, 32] 
24. Kanamycin [11] 
25. Levofloxacin [10, 31] 
26. Norfloxacin [10] 
27. Nalidixic acid [11] 
28. Ofloxacin [10] 
29. Quinolones [27] 
30. Sulfadiazine [11] 
31. Streptomycin [10, 11] 
32. Tetracyclines [11, 27] 
33. Trimethoprim-sulfamethoxazole [10, 29] 

Resistant  
1. Ampicillin[10, 11, 30, 32] 
2. Amoxicillin-clavulanic acid [31] 
3. Chloramphenicol [11] 
4. Clindamycin [27] 
5. Cephalothin[1, 11, 32] 
6. Cefazolin [29] 
7. Cefotaxamine[33] 
8. Doxycycline [5] 
9. Erythromycin [34] 
10. Fusidic acid [27] 
11. Fosfomycin[27] 
12. Lincomycin[27, 30] 
13. Macrolides[30] 

14. Novobiocin[34] 
15. Nitrofurantoin[5] 
16. Neomycin[1] 
17. Penicillin[11] 
18. Penicillin G[5, 32] 
19. Rifampicin[10, 27, 31] 
20. Streptogramins[27] 
21. Streptomycin  [31] 
22. Sulfamethoxazole[6, 11] 
23. Tetracycline [11, 31] 
24. Trimethoprim[1] 
25. Vancomycin[5] 

 
newborns (earlier than 36 weeks) particularly 
newborns younger than 28 days old, underweight 
newborns <2.5 kg, newborns with 
immunodeficiency, newborns whose mothers are 
HIV-positive and newborns hospitalized in 
intensive care units are at higher infection                      
risk due to formula feeding [5,18].                       
Nowadays, based on different cases 
worldwide,50% of the infected adults suffering 
from a severe course of illness, are less than 60 
years old [71]. 
 
5. EPIDEMIOLOGY  
 
One type of neonatal meningitis was first 
emerged in England in 1958 and led to the death 
of 2 children. Most cases were reported in five 
countries including: United States of America 
(USA), United Kingdom (UK), France, Belgium 
and The Philippines, the published neonatal 
Cronobacter infections are listed in                       
Table 3 [72]. 

6. VIRULENCE FACTORS  
 

The seriousness of the illness is linked with a 
high rate of death (up to 80%) in newborns and 
neonates infected by C. sakazakii, therefore, 
further studies on virulence and survival factors 
of this gastrointestinal infecting agent are 
required. 
 
Intestinal bacterial colonization is considered a 
multifactorial process which requires additional 
experimental examination in order to achieve a 
better perception of the generation and 
development of a disease in pathogenesis of              
C. sakazakii bacteria in GI tract; although some 
selective genes could activate in the virulence of 
Cronobacter bacteria [101,103]. Researchers 
discovered an association between virulence 
genes and their abilities to adhere and invade 
Caco-2 cells [104]. First step after attacking 
abdominal tract, is the binding of the bacteria to 
tissue cells. Several researches have been 
conducted in order to identify this infectious 
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agent, they have shown that fibronectin, a 
glycoprotein which shapes a proportion outside a 
cell matrix of eukaryotic tissue, plays an 
important role in host cell adhesion and 
attachment, growth, differentiation and 
movement [105,106]. Studies have revealed that 
fibronectin binding is the most crucial spot of the 
attachment of bacteria to digestive tract cells 
[107]. A fibronectin-binding protein with a key 
role of being attached to this bacterium, is outer 
membrane protein A (OmpA) [105,108]. After 
joining or binding to the host tissue, the bacterial 
invasion occurs in 60 minutes [1]. The attack 
mechanism of C. sakazakii has not been 
determined yet, but various factors such as the 
host and bacterial membrane proteins may affect 
this progress. In healthy people, the tight-
junctions between gut epithelia cells have a 
significant function to inhibit the entrance of the 
bacteria into epithelial cells. Hence, it is not 
unexpected that the attack by C. sakazakii 
disrupts the function of tight junctions by 
lipopolysaccharides (LPS) in the bacterial 
membrane [43,109]. Although, Kim et al. (2010) 
revealed that another outer membrane protein, 
OmpX, can also have a key role in attacking 
Caco-2 epithelial cells and Hep-2 cells by                    
C. sakazakii [110,111]. 
 
C. sakazakii is a well-known special 
microorganism that can pass through the barrier 
between brain tissues and circulating blood 
which can damage human Endothelial 
microvascular brain cells (HBMEC) [112]. OmpA 
protein has also been involved in the invasion of 
HBMEC. Nair et al. [108] revealed that the 
deficiency of this protein leads to a decrease of 
HBMEC invasion by 83%. While both OmpA and 
OmpX seem to be able to enter the blood-brain 
barrier causing brain cell necrosis with an 
unknown mechanism; although it is probable that 
the response of the host's immune system is 
involved here [36]. Moreover, C. sakazakii 
dominates zpx, a gene which encrypts a zinc 
containing metalloprotease and it is also 
responsible for the lysis of collagen and could 
probably enable the bacteria to cross the blood-
brain barrier [113]. Another important virulence 
factor is the ability of some strains of C. sakazakii 
to survive in macrophages up to 48 hours. The 
flagella of Cronobacter spp. is crucial for biofilm 
formation and cell attachment [15]. Flagellum 
plays an important role in the activation of pro-
inflammatory cytokines in macrophages [103]. 
Flagellation genes: flgA, flgB, flgC, flgD, flgF, 
flgG and fliE, are all engaged in flagellar basal 
body biosynthesis in the membrane [114]. 

Bacterial toxin is another virulence factor which 
can tolerate higher temperatures (90°C for 30 
mins), with a highpoisonous potential (LD50=56 
pg) [104,115]. Survival in macrophages is 
different among the strains, which is related to 
the presence of putative sod genes, encoding a 
superoxide dismutase [116]. 
 
Disturbance of epithelium cells stimulates the 
release of different pro and anti-inflammatory 
chemokines and cytokines such as changing 
growth factor β (TGF-β) and Nitric Oxide (NO) 
[117]. Another virulence factor is the ferric 
decipher transport framework which has been 
detected in C. sakazakii and C. malonaticus 
clinical cases, which revealed that iron 
procurement framework is fundamental for 
selectivity of Cronobacter organisms [118]. The 
other virulence factor of C. sakazakii is capsular 
material, which settles in plant and causes the 
production of a new hetero polysaccharide. This 
capsular material could make the organism 
easily attach to plant surfaces [10]. Another 
destructive factor is O-antigen (O-
polysaccharide) that is composed of various 
oligosaccharides and is a lipopolysaccharide 
factor in the external layer of Gram-negative 
microorganisms. There are 17 O-sero groups for 
Cronobacter spp., among which, 7 are identified 
as C. sakazakii [119]. 
 

7. MOLECULAR TYPING METHODS 
 
Certain types of Cronobacter are considered as 
opportunistic pathogens, however their 
demodulation in drain items as per ISO/TS 
22964 may take up to six days [120]. Therefore 
molecular methods are used as quick and 
trustworthy tools to study bacterial genomic 
diversity and to track sources of infection [6, 
82,121]. For a precise characterization of 
Cronobacter species in PIF and its associated 
environments, various molecular based protocols 
have been improved, which contain direct target 
gene detection (Table 4) and subtype methods 
[100,122]. 
 

7.1 Polymerase Chain Reaction (PCR) 
 

Molecular methods for example, polymerase 
chain response (PCR) could provide intense 
apparatuses to fast, particular, and delicate 
identification of sustenance borne pathogens and 
are respected to be solid contrasting options to 
conventional bacteriological strategies. This 
method is involved in internal amplification 
controls [123]. 
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Table 3. Published neonatal Cronobacter  infections (1958-2013) 
 

Year Location  Cases  Outcome  Infection  Source  Reference  
1958 England 2 2 Meningitis Unknown [73] 
1958 Denmark 1 1 Meningitis Unknown [74] 
1958 Georgia 1 0 Bacteremia Unknown [75] 
1958 Oklahoma 1 1 Meningitis, sepsis Unknown [76] 
1958 Indiana 1 0 Meningitis Unknown [77] 
1961 England 2 2 Meningitis Unknown [73] 
1965 Denmark 1 Unknown Meningitis Unknown [74] 
1979 Georgia 1 0 Bacteremia Unknown [75] 
1977-1981 Denmark 8 6 Meningitis IFM [78] 
1977-1981 Czechoslovakia NS NS NS NS [8] 
1981 Greece 1 Unknown Meningitis, sepsis Unknown [76] 
1981 Indiana 1 0 Meningitis Unknown [77] 
1983 Denmark 8 6 Meningitis PIF [78] 
1984 greece 11 4 Colonisation Unknown [26] 
1984 Missouri 1 0 Meningitis Unknown [79] 
1984 England 2 0 Meningitis Unknown [80] 
1985  1 0 Meningitis Unknown [79] 
1986-1987 Iceland 3 2 Meningitis IFM [81, 82] 
1987 Greece 11 5 Meningitis, sepsis Unknown [26] 
1981–1988  2 NS Meningitis Unknown [84] 
1988 England 2 0 Meningitis Unknown [80] 
1988 Tennessee 4 0 Sepsis, bloody, diarrhea IFM, blender [25, 82] 
1988 Maryland 1 0 Bacteremia IFM [85] 
1988 Ohio 1 0 Meningitis NS [86] 
1989 Iceland 3 1 Meningitis PIF [81] 
1989 Spanish 2 2 Appendicitis, conjunctivitis NS [83] 
1989 Portugal 4 0 Meningitis Unknown [84] 
1989 Tennessee 1 0 Sepsis, diarrhea PIF [25] 
1990 Georgia 4 NS Septicemia PIF [82] 
1990 Baltimore 1 0 Bacteremia PIF [85] 
1991 Ohio NS NS Meningitis NS [86] 
1994 Hong Kong 1 NS Necrotising enterocolitis Unknown [87] 
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Year Location  Cases  Outcome  Infection  Source  Reference  
1994 Erlangen-Nümberg 1 0 Meningitis Unknown [88] 
1996 Canada 1 0 Wound infection Unknown [89] 
1998 Belgium 12 0 Enterocolitis IFM [24] 
1999-2000 Israel NS NS NS IFM, blender [90] 
1999-2000 Israel 2 0 Bacteremia,meningitis IFM, blender [91] 
1999-2000 USA 1 0 Bacteremia NS [29] 
2000 USA 1 0 Meningitis NS [92] 
2001 Tenessee 11 1 Meningitis, enterocolitis IFM [93] 
2001 Belgium 12 0 Enterocolitis PIF [24] 
2001 Israel 2 0 Bacteremia,meningitis PIF [91] 
2001 USA 1 0 Bacteremia NS [29] 
2002 Israel NS NS NS PIF [90] 
2002 Tenessee 11 1 Meningitis, enterocolitis PIF [93] 
2004 France 2 NS NS NS [69] 
2007 India 2 1 Respiratory distress,sepsis PIF [94] 
2009 India 1 0 Urinary tract infection NS [95] 
2009-2010 Tanzania 12 NS septisemi artificial feeding(milk powder) [96] 
2010 Argentina 1 unknown septicemia unknown [97] 
2010 Mexico 2 0 gastroenteritis R-PIF, PIF, and fecal matter [98] 
2010 Mexico 2 NS NS NS [99] 
2007 - 2013 Czech Republic 31 NS NS NS [100] 

•NS Not specified in papers, not stated 
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Table 4. Molecular detection methods and related ge nes in Cronobacter sakazakii  
 

Reference  Metod  Target gene  
[37] PCR-RFLP* GLUB 
[147] 
[148] 
[10] 
[149] 
[150] 

PCR 
 
 
 
PFGE 

 
gluA 
(α-glucosidase gene) 

[151] 
 

species-specific PCR gyrB 
(DNA gyrase subunit B) 

[122] 
[152] 
[152] 

Sequencing 
MLST 
MLVA 

fusA 

[141] PCR Weh C 
[141] PCR Weh I 
[142] PCR wzx 
[96] PFGE hsp60 
[113] 
[153] 

PCR Zpx 
(zinc-containing metalloprotease) 

[154] 
[152] 

real-time PCR dnaG 

[154] 
[150] 

PCR 
PFGE 

 
 

[155] real-time PCR Dps 
[155] real-time PCR LuxS 
[123] PCR palE 

(Isomaltulose, 6-O-α-glucopyranosyl-D-fructose) 
[66] PCR C. sakazakii-specific CDS 
[156] PCR Cpa 

(Cronobacter plasminogen activation) 
[157] mPCR cgcA 
[158] 
[96] 
[159] 
[98] 
[160] 
[161] 
[100] 
[17]. 
[31]. 

PCR RpoB 
 
 
(RNA polymerase beta-subunit gene) 

[157] 
[96] 
[98] 
[31] 
[161] 
[161] 

mPCR 
PFGE 
 
 
mLST 
mLVA 

RpoB 

[162] 
[120] 
[37] 
[162] 

real-time PCR ompA 
(Outer membrane protein A) 

[160] 
[161] 
[10] 
[31] 
[139] 

PCR 
 
 
 
duplex PCR 
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Reference  Metod  Target gene  
[31] 
[161] 
[161] 

mPCR 
mLST 
mLVA 

[38] 
[64] 
[163] 
[159] 
[59] 
[164] 
[149] 
[163] 

PCR 
 
 
 
 
 
real-time PCR 
PFGE 

16S rRNA 
 
 
 
 
 
 
 

[42] 
[114] 

real-time PCR 
 

16S rDNA 

[14] 
[96] 
[96] 

PCR 
 
PFGE 

 

[64] 
[42] 

PCR 
 

23S rRNA 
 

[165] PCR 23S rDNA 
[42] 
[139] 

PCR 
duplex PCR 

16S–23S rDNA 
 

[166] PCR t-RNA-glu (transfer (t)RNAGlu) 
[165] real-time PCR t-RNA-glu–23S RNA 
[167] PMA-mPCR-IAC** bacterial DNA 
[168] 
 
[168] 

MLSA  
 
rep-PCR 

 
recN 
 

[161] 
[161] 

MLST  
MLSA 

O-antigen serotype  
(O-polysaccharide) 

*Restriction fragment length polymorphism 
**Internal amplification control (IAC)/multiplex PCR (mPCR)/ propidium mono azide (PMA) 
 

7.2 Real-Time PCR 
 
Real-time PCR is highly sensitive and allows 
quantification of rare transcripts and small 
changes in gene expression. It is also easy to 
perform, provides the necessary accuracy and 
produces reliable rapid quantification results. 
many studies different have used real time pcr 
teqnique targeting genes successfully (Table 4) 
[123]. 
 
7.3 Multiplex PCR (mPCR)  
 
Unlike normal PCR, multiplex PCR (mPCR) can 
perceive at least two pathogens in a solitary 
examination and it is definitely swifter, less 
demanding, and less expensive to be run. 
However, it cannot distinguish between living and 
dead bacteria [37]. The DNA from dead 
microscopic organisms can fill in as a format 
amid PCR enhancement bringing about false 
positive outcomes. A promising procedure to 
defeat this downside is the utilization of nuclei 

corrosive intercalating colors, for example, 
propidiummonoazide (PMA), as a specimen pre-
treatment preceding mPCR. PMA is a DNA-
intercalating color which can selectively enter the 
dead cells with compromised membrane integrity 
and make a cross link with the DNA utilizing its 
azide groups upon light-exposure [124]. This 
adjustment brings about the elimination of DNA 
amplification from dead cells during PCR. 
Consolidating the quick and affectability of 
mPCR, this methodology has turned into a 
normal option strategy for the qualification 
amongst live and dead cells over the most recent 
couple of years [125-127]. 
 
7.4 Repetitive Element Sequence-Based 

PCR (Rep-PCR) 
 
Repetitive element sequence-based PCR (rep-
PCR) can be called a typing procedure with the 
ability to activate the generation of DNA 
fingerprinting which can separate and distinguish 
bacterial strains [128]. 
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7.5 PCR-RFLP (PCR - Restriction 
Fragment Length Polymorphism) 

 
An alternate, conventional and standard RFLP 
system is PCR-RFLP, which includes PCR 
amplification of particular DNA sequences in the 
organism and designating the PCR amplicons 
with a restriction enzyme to make a               
DNA banding pattern [129]. For PCR-RFLP to be 
successful, the amplified gene used for RFLP 
typing should have conserved regions of        
DNA that flank variable sequences to             
allow differences in the digestion of the amplicon 
[130]. 
 
7.6 Pulsed-Field Gel Electrophoresis 

(PFGE) 
 
PFGE is a form of RFLP typing in which the 
bacterial genome is digested with an uncommon 
cutting enzyme, which creates fewer DNA 
fragments of different sizes that can be 
separated using particular electrophoresis 
techniques. Differences in the restriction profiles 
are used to carry out genetic comparisons 
among isolates [131]. 
 
Pulsed-field gel electrophoresis with two 
restriction enzymes (Xba1 and Spe1) is an 
approved procedure for tracking isolates across 
the food chain; this is an appropriate approach 
for epidemiological studies [6]. Likewise, PFGE is 
well established and widely applied as a gold-
standard method for molecular typing of bacteria 
including Cronobacter spp [132,133]. 
 
This procedure is restricted, although, as not all 
strains can be typed, non-identical strains can 
give the same PFGE profile, and the procedure 
does not identify the relationship between strains 
[134]. 
 
7.7 MLST (Multi Locus Sequence Typing) 
 
On a bigger scale, multi locus sequence typing 
(MLST) was developed for Cronobacter species, 
which concentrates on single nucleotide 
polymorphisms associated with seven 
housekeeping genes (including atpD, fusA, glnS, 
gltB, gyrB, infB, and pps) and identifies the 
related alleles (Joseph, Cetinkaya et al. 2012 ). 
This convention has been utilized to portray a 
portion of the assorted qualities related to the 
genus (Hariri, Joseph et al. 2013). Both PFGE 
and MLST have been broadly used to study the 

genomic diversity of Cronobacter isolated from 
manufacturing facilities, business PIF, follow-up 
equation and also clinical isolates [122,135,136]. 
 
7.8 Multilocus Sequence Analysis (MLSA) 
 
To obtain a higher resolution of the phylogenetic 
relationships of species within a genus or genera 
within a family, multi locus sequence analysis 
(MLSA) is used widely. In MLSA studies, partial 
sequences of genes coding for proteins with 
conserved functions ('housekeeping genes') are 
used to generate phylogenetic trees and 
subsequently deduce phylogenies. Although 
MLSA is not only suggested as a phylogenetic 
tool to support and clarify the resolution of 
bacterial species with a higher resolutionas in 
16S rRNA gene-based studies, it has been 
discussed as a substitution for DNA-DNA 
hybridization (DDH) in species delineation. 
However, despite the fact that MLSA has 
become an accepted and widely used method in 
prokaryotic taxonomy, no common generally 
accepted recommendations have been devised 
to date for either the whole area of microbial 
taxonomy or for taxa-specific applications of 
individual MLSA schemes [137]. 
 
7.9 Multiple-Locus Variable Number 

Tandem Repeat Analysis (MLVA) 
 
Multiple-Locus Variable number couple repeated 
investigation (MLVA) is a technique utilized to 
actualize sub-atomic writing of specific 
microorganisms. It utilizes the naturally occurring 
variation in the number of tandem repeated DNA 
sequences found in many different loci in the 
genome of a variety of organisms [138]. 
 
7.10 Duplex Polymerase Chain Response 

(PCR) in Mix with Slender 
Electrophoresis–Laser Incited 
Fluorescence (CE–LIF) Locator 

 
Duplex PCR incorporated into narrow 
electrophoresis-laser-prompted fluorescence 
sensor is another method to identify the species 
in food products. Also it is suitable to detect food 
borne pathogenic bacteria that may be present in 
small or large amounts in the samples. low or 
high numbers of food borne pathogenic bacteria 
in samples. This procedure could make the 
whole recognition procedure of Cronobacter spp. 
faster, less expensive, more sensitive and 
environmentally friendly [139]. 
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7.11 Molecular O-Antigen Typing 
 
O-antigen is a constituent of LPS 
(Lipopolysaccharide) structure which is arranged 
on the external surface of Gram-negative 
microbes and is in charge of serological assorted 
qualities. As a Gram-negative pathogen, the cell 
surface of Cronobacter is ensured with a thick 
region of LPS (endotoxin) with a lipid center, the 
lethal moiety framing 8% of the aggregate LPS 
weight [140]. It was also shown that different 
strains of Cronobacter have the LPS with 
different structures, and they exhibit refinement 
in pathogenicity which rely upon contrasts to 
structure (linearversus spread) and synthesis of 
LPS. 
 
It has been described as a useful method to 
depict Gram-negative bacteria, O-antigen typing 
and studies describing the nature of the O-
antigen associated with Cronobacter spp. [141, 
142]. Mullane, O'Gaora et al. [141] initially 
developed a molecular serotyping method, based 
on amplification of the rfb encoding locus (in 
Gram-negative enteric bacteria and this is 
located between halF and gnd) followed by MboII 
digestion. 
 
7.12 Fluorescence in Situ Hybridization 
 
Fluorescence in situ hybridization is a technique 
to detect the bacteria. It is based upon thebinding 
of specific probes to nucleic acid target regions. 
This method is used in PIF when there are mixed 
bacterial populations and in lower concentration 
to other bacteria(Almeida, Azevedo et al. [143] 
which recently described the application of a 
novel peptide nucleic acid probe in detecting 
Cronobacter spp. in PIF. Studies demonstrated 
that these methods can distinguish                          
Cronobacter spp. They have also observed that 
peptide nuclei corrosive fluorescence in situ 

hybridization facilitated the detection of 
Cronobacter spp.  
 
8. NUMEROUS LOCUS VARIABLE-

NUMBER COUPLE REHASH 
INVESTIGATION 

 
Recently, other molecular subtyping techniques 
have been developed and compared with PFGE 
for the analysis of Cronobacter strains. Variable-
number tandem-repeat motifs are short repeat 
sequences dispersed throughout bacterial 
genomes that are highly polymorphic. These 
regions have been used for subtyping bacteria 
[143-146]. 
 

9. PREVENTION & CONTROL MEASURES 
 

There is a high bacterial resistance to low pH, 
high temperature, dryness and osmotic stress, 
therefore, baby food industry tried to minimize 
bacterial food safety hazards in their products. 
Safety measures in PIF are as follows: bioactive 
peptides, probiotics and prebiotics, protectants or 
optional procedures, organic acids, HHP, gamma 
irradiation, supercritical carbon dioxide, head 
lettuce by utilizing a combination and a union of 
ultrasound and sodium hypochlorite, presentation 
to microwaves or to a union of UV and close 
infrared radiation warming [51]. Contamination 
can occur in post-pasteurization stages or at the 
time of product preparation or before using the 
product, therefore, these steps can be 
considered as critical control points. The factors 
which increase the infection are: the patient 
sensitivity, resilience to temperature, dosage of 
irresistible, development rate and the 
destructiveness of the microorganism. In general, 
there must not be any sign of the microorganism 
in 10 grams of the tested product taken from 30 
samples [18]. The combined steps to decrease 
the risks of C. sakazakii infection are given in 
Table 5 [18,20,51,169]. 

 
Table 5. Combined steps to reduce risks of C. sakazakii  infection 

 

During production  
Preparation of powdered formula for aseptic technical skills by trained personnel. 
Supervision of raw substances, specifically before using components which are needed to heat up. 
Reducting the level of bacterial contamination in the early stages of production to reduce or prevent 
the presence of bacteria in the next steps 
Increasing the frequency of inspections in food production environments and end products 
Recognize potential pollution resources and enhance them. 
Adjusting correct instructions regarding high water temperature, but not higher than 80 °C, for 
solubility (> 70 °C). Too high temperature damages the nutritional features of the product. 
Enforce appropriate control measures which can assess potential hazards, identify critical control 
points (CCP), monitor non-conformities and necessary corrective actions, and register results. 
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At home  
Use sterilized containers 
Products should be kept in refrigerator right after the usage at 2-3 °C and use the formula within 2 h  
of preparation. 
Prepare enough food and do not prepare for more than 1 or 2 meals. 
Select the proper newborn formula which is sold in liquid form, especially when your baby is a 
newborn one or very young. The liquid formulations of infant formula have been made to be 
sterilized and should not contain Cronobacter spp. 

In hospitals  
Producing guidelines regarding preparation, protection and control of the products and the provision 
of these guidelines by trained personnel. 
Sterilize all utensils used for preparation with thermal treatment (washing in dishwashers) or with 
autoclave. 
Whenever possible use disposable tool and throw them away after usage. 
Use qualified and specialized personnel (dieticians). 

 
10. CONCLUSION 
 
C. sakazakii is considered as an opportunistic 
pathogen and it is classified as category B which 
means it could cause infections in all age groups, 
specifically the newborns, with resistance pattern 
against many antibiotics. Food and Drug 
Administration (FDA) procedures ,in order to 
identify and isolate these bacteria from PIF, are 
time consuming and labor intensive ,so new 
molecular procedures are being used instead. 
Molecular methodologies based on nucleic acid 
recognition such as PCR and PFGE have been 
successfully improved during the last few     
years, especially rpoB and ompA which         
were more applicable among various  
researches. Consequently, all these new 
advances still need further improvements, such 
as reproducibility and cost advantage proportion 
issues, before they are considered as standard 
ones. 
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